Spore wall architecture of Glomus spp.

1987 ◽  
Vol 65 (3) ◽  
pp. 539-546 ◽  
Author(s):  
Paola Bonfante-Fasolo ◽  
A. Schubert

Vesicular–arbuscular mycorrhizal fungal spore walls are of important diagnostic value in identifying a species within a genus. Since ultrastructural descriptions have so far been limited to a few species, the aim of this work was to describe the ultrastructural organization of seven species of Glomus. All these species show a different overall architecture, confirming wall analysis as a good taxonomic criterion. Some features, however, were shared by all spores, chiefly a fibrillar texture given by highly ordered fibrils embedded in an amorphous matrix; the rhythm of the fibrillar deposition seems to be specific for each species. The meaning of such ordered deposition is discussed.

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0160356 ◽  
Author(s):  
Gopal Selvakumar ◽  
Ramasamy Krishnamoorthy ◽  
Kiyoon Kim ◽  
Tong-Min Sa

1993 ◽  
Vol 48 (11-12) ◽  
pp. 923-929 ◽  
Author(s):  
S. M. Boyetchko ◽  
J. P. Tewari

Abstract Three V A mycorrhizal fungal species were isolated from soils in Alberta, Canada and examined by scanning electron microscopy and energy-dispersive X-ray microanalysis. Mature spores of Glomus aggregatum developed an outer hyaline wall which contained lower levels of calcium than the middle wall. Examination of G. pansihalos spores revealed a lower level of calcium in the outer evanescent wall as compared to the ornamented wall. When spores of Entrophospora infrequens were examined, the wall of the vesicle was found to contain similar levels of calcium as the ornamented wall of the spore. The significance of the results concerning the presence of calcium in mycorrhizal spore walls is discussed, as is the occurrence of the mycorrhizal species.


2005 ◽  
Vol 72 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S.M. Boyetchko ◽  
J.P. Tewari

Spores of Glomus dimorphicum were examined for parasitism. Light and scanning electron microscopy revealed perforations, approximately 0.25 to 1.0 µm in diameter, in the spore wall. The presence of papillae, a dynamic host response, suggested that the parasitism occurred while the vesicular-arbuscular mycorrhizal fungus was still alive. No filamentous structures were detected in the spores; however, cysts of amoeba-like organisms were found in the spores and were also observed on agar plates on which surface-sterilized spores of G. dimorphicum containing such organisms were placed. It is postulated that an amoeba-like organism was the parasite, since the perforations on the spore wall were minute and no bacteria or fungi were seen inside the spores.


2020 ◽  
Vol 46 ◽  
pp. 100899 ◽  
Author(s):  
Coline Deveautour ◽  
Jeff Chieppa ◽  
Uffe N. Nielsen ◽  
Matthias M. Boer ◽  
Christopher Mitchell ◽  
...  

1985 ◽  
Vol 15 (6) ◽  
pp. 1061-1064 ◽  
Author(s):  
Paul P. Kormanik

Sweetgum seedlings with vesicular–arbuscular mycorrhizae formed by Glomusetunicatum or Glomusdeserticola in nursery soil with 30 ppm available phosphorus (P) and nonmycorrhizal seedlings grown in nursery soil with 800 ppm available P were outplanted and whole trees were excavated periodically over the next 5 years in the plantation to follow mycorrhizal development. Four months after outplanting, roots of all initially nonmycorrhizal seedlings had formed vesicular–arbuscular mycorrhizae and the degree of root colonization was comparable to that of initially vesicular–arbuscular mycorrhizal seedlings. New feeder roots did not develop on seedlings of any treatment until almost 5 months after planting. By the end of the first growing season and for the remainder of the study, vesicular–arbuscular mycorrhizae development was approximately the same on all seedlings. The proportion of feeder roots colonized by vesicular–arbuscular mycorrhizal fungi stabilized at 65 to 70%; approximately 56% of the cortical tissues of all feeder roots were colonized with arbuscles, vesicles, and hyphae. Periodic assays of the soil in the plantation showed that vesicular–arbuscular mycorrhizal fungal spores gradually declined from an initial high of 3600 spores to 620 spores per 100-cm3 soil sample after 5 years. This decline was probably caused by crown closure of the sweetgum trees which gradually suppressed understory vegetation.


1997 ◽  
Vol 48 (1) ◽  
pp. 103 ◽  
Author(s):  
P. G. Braunberger ◽  
L. K. Abbott ◽  
A. D. Robson

The results of 2 experiments investigating the early stages of the formation of vesicular- arbuscular (VA) mycorrhizas in response to both soil temperature and the timing of autumn rains are reported for a Mediterranean environment in the south-west of Western Australia. In Expt 1, treatments including an early break, a late break, and a false break followed by a late break were applied to a mixed and sieved field soil collected dry in the summer and placed in pots in a glasshouse. In each break, pots were watered to field capacity and planted with subterranean clover (Trifolium subterraneum) or capeweed (Arctotheca calendula). In early and false breaks, both initiated on the same day in early autumn, the soil temperature was maintained at 30°C, and in the late break, initiated 50 days later in autumn, the soil temperature was maintained at 18°C. In both early and late breaks, pots were watered to field capacity for either 21 or 42 days when plant and mycorrhizal variables were assessed. In a false break, pots were watered to field capacity for 7 days after which the soil was allowed to dry and newly emerged plants died. These pots were then rewatered and replanted at the same time as pots receiving a late break, and subjected to the same soil temperature (18°C). In Expt 2 performed the following year, soil temperature was maintained at 31 or 18°C in both early and late breaks. Pots were planted with clover and watered to field capacity for 21 or 42 days, when plant and mycorrhizal variables were assessed. In Expt 1, VA mycorrhizal colonisation of both clover and capeweed was initially low in an early break compared with levels observed in a late break. Only mycorrhizas formed by Glomus spp. were observed in the early break, whereas mycorrhizas of Glomus, Acaulospora, and Scutellospora spp. and fine endophytes were observed in the late break. Colonisation was decreased by a false break, predominantly because of a decrease in formation of mycorrhizas of Glomus spp. In Expt 2, mycorrhizas of Glomus spp. predominated in warm soil in both early and late breaks and mycorrhizas of Acaulospora spp., Scutellospora spp., and fine endophytes were observed in greater abundance in cool soil in early and late breaks. These experiments indicate that soil temperature at the time of the break will have a large impact on both the overall levels of VA mycorrhizal colonisation of pasture plants and colonisation by different fungi. In addition, fungi that remain quiescent in warm soil may avoid damage in a false break.


Sign in / Sign up

Export Citation Format

Share Document