mycorrhizal development
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 3)

H-INDEX

23
(FIVE YEARS 1)

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2019
Author(s):  
Nour ALHadidi ◽  
Zoltán Pap ◽  
Márta Ladányi ◽  
Viktor Szentpéteri ◽  
Noémi Kappel

Sweet potato is an increasingly significant crop and its effective and sustainable cultivation has become important in temperate countries. The purpose of this pilot study was to investigate the effects of a mycorrhizal inoculum, Symbivit, and whether it could establish a symbiotic relationship with the seedlings of two sweet potato varieties (orange and purple). The effectiveness of the mycorrhizal inoculation with a sterilized substrate on the mycorrhizal parameters (F%, M%, m%, a%, A%) and physical parameters “[length of roots and shoots (cm), the fresh weight of shoots and roots (g) as well as the length of stem (cm)]” on the sweet potato seedlings has also been studied. Results show that the sterilization treatment with Symbivit in both varieties increased the frequency of mycorrhiza in the root system. For the intensity of the mycorrhizal colonization in the root fragments and the arbuscular abundance, there was a difference between the mycorrhizal inoculum and the sterilization treatment among the varieties. Overall, the preliminary results provided remarkable information about mycorrhizal inoculation, substrate sterilization on mycorrhizal development, as well as changes in the physical parameters between sweet potato seedlings. Our results could serve as a practical strategy for further research into adding significance to the effect of the beneficial soil microbes on sweet potatoes.


Author(s):  
Tania Ho-Plágaro ◽  
Raúl Huertas ◽  
María I Tamayo-Navarrete ◽  
Elison Blancaflor ◽  
Nuria Gavara ◽  
...  

Abstract The formation of arbuscular mycorrhizal (AM) symbiosis requires plant root host cells to undergo major structural and functional reprogramming in order to house the highly branched AM fungal structure for the reciprocal exchange of nutrients. These morphological modifications are associated with cytoskeleton remodelling. However, molecular bases and the role of microtubules (MTs) and actin filament dynamics during AM formation are largely unknown. In this study, the tomato tsb gene, belonging to a Solanaceae group of genes encoding MT-associated proteins for pollen development, was found to be highly expressed in root cells containing arbuscules. At earlier stages of mycorrhizal development, tsb overexpression enhanced the formation of highly developed and transcriptionally active arbuscules, while tsb silencing hampers the formation of mature arbuscules and represses arbuscule functionality. However, at later stages of mycorrhizal colonization, tsb OE roots accumulate fully developed transcriptionally inactive arbuscules, suggesting that the collapse and turnover of arbuscules might be impaired by TSB accumulation. Imaging analysis of the MT cytoskeleton in cortex root cells overexpressing tsb revealed that TSB is involved in MT-bundling. Taken together, our results provide unprecedented insights into the role of novel MT-associated protein in MT rearrangements throughout the different stages of the arbuscule life cycle.


2018 ◽  
Vol 44 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Subrata Nath Bhowmik ◽  
Gulab Singh Yadav ◽  
Mrinmay Datta

Rhodes grasses (Chloris gayana Kunth) inoculated with Glomus mosseae were grown under the influence of Azospirillum (biotic factor), IAA (abiotic factor) and Hoagland’s solution (abiotic factor). The effectiveness of each factor was evaluated by measuring mycorrhizal root colonization and spore numbers. The pot culture experiment was carried out under polyhouse condition and observations were recorded at 45, 90 and 120 days of plant growth. The harvest date finely influenced the size of mycorrhizal inoculum. But, all biotic and abiotic factors had a greater influence on root colonization and spore multiplication than harvest time. The agents on application in conjunction favourably enhanced root infection and spore multiplication as compared to their solo treatments, with Azospirillum + Hoagland’s solution application posing to be the best. This not only stimulated mycorrhizal development, but also accelerated the root growth.


Mycorrhiza ◽  
2017 ◽  
Vol 27 (6) ◽  
pp. 603-609 ◽  
Author(s):  
Sergi Garcia-Barreda ◽  
Sara Molina-Grau ◽  
Ricardo Forcadell ◽  
Sergio Sánchez ◽  
Santiago Reyna

2016 ◽  
Vol 108 (2) ◽  
pp. 930-938 ◽  
Author(s):  
Yichao Shi ◽  
Noura Ziadi ◽  
Chantal Hamel ◽  
Julie Lajeunesse ◽  
Jean Lafond

2016 ◽  
Vol 62 (3) ◽  
pp. 263-271 ◽  
Author(s):  
Walid Ellouze ◽  
Chantal Hamel ◽  
R.M. DePauw ◽  
R.E. Knox ◽  
Richard D. Cuthbert ◽  
...  

The selection of genotypes under high soil fertility may alter the effectiveness of mycorrhizal symbioses naturally forming between crop plants and the mycorrhizal fungi residing in cultivated fields. We tested the hypothesis that the mycorrhizal symbiosis of 5 landraces functions better than the mycorrhizal symbiosis of 27 cultivars of durum wheat that were bred after the development of the fertilizer industry. We examined the development of mycorrhiza and the response of these genotypes to mycorrhiza formation after 4 weeks of growth under high and low soil fertility levels in the greenhouse. The durum wheat genotypes were seeded in an established extraradical hyphal network of Rhizophagus irregularis and in a control soil free of mycorrhizal fungi. The percentage of root length colonized by mycorrhizal fungi was lower in landraces (21%) than in cultivars (27%; P = 0.04) and in the most recent releases (29%; P = 0.02), which were selected under high soil fertility levels. Plant growth response to mycorrhiza varied from –36% to +19%. Overall, durum wheat plant breeding in Canada has increased the mycorrhizal development in wheat grown at a low soil fertility level. However, breeding had inconsistent effects on mycorrhizal development and has led to the production of cultivars with patterns of regulation ranging from unimproved to inefficient.


2015 ◽  
Vol 23 (2) ◽  
pp. 17-25 ◽  
Author(s):  
Shirin Rezvanypour ◽  
Abdollah Hatamzadeh ◽  
Seyed Ali Elahinia ◽  
Hamid Reza Asghari

AbstractAn experiment was conducted in order to investigate the effects of exogenous polyamines (PAs) on the development of mycorrhizae in roots, nutrient uptake and vegetative and reproductive growth ofFreesia hybrida‘Golden Wave’. Corms of freesia were inoculated withRhizophagus intraradicesat sowing time and treated once a week by one of three PAs, putrescine (Put), spermidine or spermine, in concentrations of 0.05 and 0.1 mM each as foliar application or soil drench. Application of PAs, especially as soil drench, increased mycorrhizal colonization as well as the growth and development of inoculated plants. Among the three PAs, Put in 0.1 mM concentration was the most effective in increasing colonization, enhancing floral stem length and diameter, floral spike length, floret number on main and lateral spikes and increasing corm and cormlet weight, corm diameter and cormlet number. Sole application of arbuscular mycorrhizal fungi had no significant effect on the flowering time but soil drench with 0.1 mM Put accelerated flowering by about 17 days. Application of PAs elevated leaves N, P, K, Mg, Fe and Zn and corms’ P, K, Ca, Fe and Zn concentration of inoculated plants. Our results suggest that soil drench application of PAs, especially Put, positively influenced mycorrhizal inoculation and nutrient uptake, which leads to improving growth, flower and corm production and quality of mycorrhizal plants of freesia.


Sign in / Sign up

Export Citation Format

Share Document