Comparison of RAPD technique and somatic incompatibility tests for the identification of Phlebiopsis gigantea strains

1997 ◽  
Vol 75 (12) ◽  
pp. 2097-2104 ◽  
Author(s):  
Geneviève Roy ◽  
Martine Cormier ◽  
Michel Dessureault ◽  
Richard C. Hamelin

Somatic incompatibility assays and random amplified polymorphic DNA (RAPD) analysis were assessed and compared for use in monitoring the survival of introduced strains of Phlebiopsis gigantea, a fungal biocontrol agent used against Heterobasidion annosum root rot. Overall there was concordance between the two methods. All incompatible strains exhibited different RAPD profiles whilst compatible ones, with two exceptions, had the same RAPD profile. Somatic incompatibility tests and RAPD profiles generated by three primers, from which 11 markers were retained, could distinguish field-tested strains from among 60 strains from a population collected in Quebec and Ontario. Furthermore, both methods allowed us to clearly demonstrate the presence of inoculated strains 1 year after treatment. The combined use of these techniques provides a valuable tool for discriminating between different P. gigantea strains and conducting epidemiological studies. Key words: Heterobasidion annosum, vegetative incompatibility, random amplified polymorphic DNA, biological control, Pinus resinosa.

2004 ◽  
Vol 34 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Vaidotas Lygis ◽  
Rimvydas Vasiliauskas ◽  
Jan Stenlid

Persistence of the root rot pathogen Heterobasidion annosum (Fr.) Bref. s.s. on infested areas and its transfer to a forest regeneration was studied in three forest sites in eastern Lithuania. The sites represented H. annosum disease centres in Pinus sylvestris L. stands, which were clear-felled and replanted with Betula pendula Roth 25 years prior to our study. Fungal isolation from trees and stumps on each site was performed on both replanted B. pendula and surrounding P. sylvestris from the previous generation. Low productivity of B. pendula stands (45.0–76.1 m3·ha–1), high mortality rates, and comparatively low vigor of trees (measured as crown densities) indicated a strong impact of root rot. Based on somatic incompatibility tests, we detected large spreading areas of clones of H. annosum (up to 48 m across) and old (35- to 40-year-old) clonal individuals. Territorial clones covered areas that encompassed both previous stands of P. sylvestris and current stands of B. pendula. Our results showed that H. annosum is able to persist in root systems of diseased trees for decades and readily attack birch replanted on infested sites. In addition, a total of 83 fungal species (out of 398 isolates) was found as a result of sampling 508 B. pendula, 49 P. sylvestris, 21 Juniperus communis L., and 1 Salix cinerea L. trees.


2012 ◽  
Vol 81 (2) ◽  
pp. 438-445 ◽  
Author(s):  
Audrius Menkis ◽  
Daiva Burokienė ◽  
Talis Gaitnieks ◽  
Antti Uotila ◽  
Hanna Johannesson ◽  
...  

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
SUNITA BORDE ◽  
ASAWARI FARTADE ◽  
AMOL THOSAR ◽  
RAHUL KHAWAL

Ptychobothridean genera like Senga and Circumoncobothrium are the common parasites of fresh water fishes. The genotypic study of these parasites was taken by RAPD. The RAPD profile of these two parasites were not similar to each other as depicted by the band pattern in picture. These results suggest the presence of inter-specific polymorphism among cestode parasites of two different genera for RAPD analysis. The present study demonstrated that genetic differentiation of cestode parasites could be accomplished on the basis of genomic variation with polymorphic band pattern using RAPD. All the detected bands (PCR product) were polymorphic and band size ranged from 500-5000 bp in length. The RAPD of profiles using GBO-31, GBO-32, GBO-33, GBO-34, GBO-35 and GBO-36. Primers were able to characterize inter-specific polymorphism among the two genus ( Senga and Circumoncobothrium ). Genetic analysis suggests that Senga and Circumoncobothrium show genetic diversity with respect to RAPD patterns using all the six primers used for the present study. The genetic distance between the analyzed genuses ranged from 0.14 to 0.80. The differentiation of the two parasites on the basis of genetic markers could greatly facilitate study on the biology of these parasites.


2022 ◽  
Vol 354 (11-12) ◽  
pp. 129-133
Author(s):  
A. Yu. Kekalo

Protecting wheat seed from phytopathogens is a popular topic for plant breeders. The objects requiring close attention and control on wheat are smut infections, pathogens of root rot. And if the pathogens of smut we have learned to fight quite effectively with, then microorganisms that infect underground parts of plants are controlled with less success and many questions in the system of protection against them remain controversial. The issue of reducing the pesticide load on agrocenoses, starting with the protection of seeds, also remains relevant. The article presents the results of field trials of means of protecting spring wheat seeds from root rot in 2019–2020, carried out within the framework of the state assignment at the Kurgan SRIA — branch of FSBSI UrFASRC, according to generally accepted methods. The aim of the research was to assess the biological, economic efficiency of the combined use of a chemical seed dressing agent and a biofungicide based on Bacillus subtilis in protecting wheat from soil-seed infections, to determine the competitiveness of an ecologized method of protecting seeds (reduced consumption rate of a chemical seed dressing agent in combination with biological fungicide). The obtained research results indicate that with a high level of damage to wheat by root rot (Fusarium, B. sorokiniana), the use of seed treatment with the studied preparations ensured the preservation of 10–12% of the yield, more efficiency was noted in the variants with the Oplot 0.5 l/t and the Oplot 0.3 l/t + Nodix Premium 0.3 l/t . The technical effectiveness of fungicides against wheat root rot ranged 44% for Nodix Premium to 85–86% for chemical protection and mixed use. An environmentally friendly method of protecting wheat seeds, which consists in using a 40% lower rate of a chemical dressing agent with a biopesticide, turned out to be competitive.


1993 ◽  
Vol 97 (10) ◽  
pp. 1223-1228 ◽  
Author(s):  
E.M. Hansen ◽  
J. Stenlid ◽  
M. Johansson

Sign in / Sign up

Export Citation Format

Share Document