Atypical chromatin structure of immune-related genes expressed in chicken erythrocytes

2020 ◽  
Vol 98 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Sanzida Jahan ◽  
Tasnim H. Beacon ◽  
Wayne Xu ◽  
James R. Davie

The major biological role of red blood cells is to carry oxygen to the tissues in the body. However, another role of the erythroid cell is to participate in the immune response. Mature erythrocytes from chickens express Toll-like receptors and several cytokines in response to stimulation of the immune system. We previously reported the application of a biochemical fractionation protocol to isolate highly enriched transcribed DNA from polychromatic erythrocytes from chickens. In conjunction with next-generation DNA, RNA sequencing, chromatin immunoprecipitation-DNA sequencing, and formaldehyde-assisted isolation of regulatory elements (FAIRE) sequencing, we identified the active chromosomal compartments and determined their structural signatures in relation to expression levels. Here, we present the detailed chromatin characteristics of erythroid genes participating in the innate immune response. Our studies revealed an atypical chromatin structure for several genes coding for Toll-like receptors, interleukins, and interferon regulatory factors. The body of these genes had nucleosome-free regions intermingled with nucleosomes modified with H3K4me3 and H3K27ac, suggesting a dynamic unstable chromatin structure. We further show that human genes involved in cell identity have gene bodies with the same chromatin-instability features as the chicken polychromatic erythrocyte genes participating in the innate immune response.

2006 ◽  
Vol 23 (5) ◽  
pp. 563
Author(s):  
G. Ventura ◽  
R. Le Goffic ◽  
V. Balloy ◽  
M.C. Plotkowski ◽  
M. Chignard ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 72
Author(s):  
Lena Trifonov ◽  
Vadim Nudelman ◽  
Michael Zhenin ◽  
Guy Cohen ◽  
Krzysztof Jozwiak ◽  
...  

TLR4, a member of the toll-like receptors (TLRs) family, serves as a pattern recognition receptor in the innate immune response to different microbial pathogens. [...]


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Viktoria V. Мokrozub ◽  
Liudmyla M. Lazarenko ◽  
Liubov M. Sichel ◽  
Lidia P. Babenko ◽  
Petro M. Lytvyn ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Keaton M. Crosse ◽  
Ebony A. Monson ◽  
Michael R. Beard ◽  
Karla J. Helbig

The ability of a host to curb a viral infection is heavily reliant on the effectiveness of an initial antiviral innate immune response, resulting in the upregulation of interferon (IFN) and, subsequently, IFN-stimulated genes (ISGs). ISGs serve to mount an antiviral state within a host cell, and although the specific antiviral function of a number of ISGs has been characterized, the function of many of these ISGs remains to be determined. Recent research has uncovered a novel role for a handful of ISGs, some of them directly induced by IFN regulatory factor 3 in the absence of IFN itself. These ISGs, most with potent antiviral activity, are also able to augment varying arms of the innate immune response to viral infection, thereby strengthening this response. This new understanding of the role of ISGs may, in turn, help the recent advancement of novel therapeutics aiming to augment innate signaling pathways in an attempt to control viral infection and pathogenesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Sarah Claire Hellewell ◽  
Maria Cristina Morganti-Kossmann

Traumatic brain injury (TBI) is a complex disease in the most complex organ of the body, whose victims endure lifelong debilitating physical, emotional, and psychosocial consequences. Despite advances in clinical care, there is no effective neuroprotective therapy for TBI, with almost every compound showing promise experimentally having disappointing results in the clinic. The complex and highly interrelated innate immune responses govern both the beneficial and deleterious molecular consequences of TBI and are present as an attractive therapeutic target. This paper discusses the positive, negative, and often conflicting roles of the innate immune response to TBI in both an experimental and clinical settings and highlights recent advances in the search for therapeutic candidates for the treatment of TBI.


2008 ◽  
Vol 36 (6) ◽  
pp. 1211-1215 ◽  
Author(s):  
Andrew E. Williams ◽  
Mark M. Perry ◽  
Sterghios A. Moschos ◽  
Hanna M. Larner-Svensson ◽  
Mark A. Lindsay

In mammalian cells, miRNAs (microRNAs) are the most abundant family of small non-coding RNAs that regulate mRNA translation through the RNA interference pathway. In general, it appears that the major function of miRNAs is in development, differentiation and homoeostasis, which is indicated by studies showing aberrant miRNA expression during the development of cancer. Interestingly, changes in the expression of miR-146a have been implicated in both the development of multiple cancers and in the negative regulation of inflammation induced via the innate immune response. Furthermore, miR-146a expression is driven by the transcription factor NF-κB (nuclear factor κB), which has been implicated as an important causal link between inflammation and carcinogenesis. In the present article, we review the evidence for a role of miR-146a in innate immunity and cancer and assess whether changes in miR-146a might link these two biological responses.


Sign in / Sign up

Export Citation Format

Share Document