Permanent deformation characteristics of saturated sand under cyclic loading

2015 ◽  
Vol 52 (6) ◽  
pp. 795-807 ◽  
Author(s):  
Yuanqiang Cai ◽  
Qi Sun ◽  
Lin Guo ◽  
C. Hsein Juang ◽  
Jun Wang

The loading path involving principal stress rotation (PSR) during shear is an important phenomenon encountered in many field conditions. Typically for traffic loading, both the magnitude and direction of principal stresses may vary with time due to the motion of vehicles, and the stress path can be mimicked by a heart shape in the deviatoric stress space. Conventional triaxial tests are not suitable to recreate this type of stress path in that no torsional shear stress can be applied on the test samples. To overcome this limitation, a series of tests using a hollow cylinder apparatus were conducted on sand to investigate the permanent deformation characteristics under drained conditions with different levels of confining pressure (σc), cyclic vertical stress ratio (CVSR), and cyclic torsional stress ratio (η). The results clearly show an increase in the permanent deformation with η, indicating that the PSR effect on permanent deformation cannot be ignored. Both σc and CVSR were found to also affect permanent deformation, which was more pronounced when PSR was coupled into the test. A five-parameter formulation that accounted for the effect of confining pressure, deviatoric stress, torsional shear stress, and number of loading cycles was subsequently established to analyze the permanent strain. The formulation coefficients were first determined and then used to explain the effects of stress variables on the permanent deformation. Validation studies were performed to address the adequacy of the formulation to predict permanent deformation.

2017 ◽  
Vol 54 (6) ◽  
pp. 768-777 ◽  
Author(s):  
Qi Sun ◽  
Yuanqiang Cai ◽  
Jian Chu ◽  
Quanyang Dong ◽  
Jun Wang

Previous studies were performed to use combined cyclic deviatoric stress and confining pressure to simulate cyclic vertical and horizontal normal stresses under traffic loading. The effect of variable confining pressure (VCP) on the permanent deformation of soils was investigated. However, some studies concluded VCP could promote the development of permanent deformation compared to the tests with constant confining pressure (CCP), while others drew the opposite conclusions. In this study, three types of CCP and VCP tests with identical maximum stress, identical average stress, and identical initial stress were conducted. Test results showed VCP tests accumulated more permanent strains when CCP and VCP tests had identical maximum or average stress, and the permanent strains increased with the decrease in the inclinations of stress paths, while similar permanent strains were generated when CCP and VCP tests had identical initial stress. In addition, larger permanent strains were generated with the increase in stress ratio or length of stress path in both CCP and VCP tests. Considering that different strains were cumulated in CCP and VCP tests with the same stress ratio, it is recommended that both stress ratio and length of stress path be considered to assess the permanent deformation.


Author(s):  
In Tai Kim ◽  
Erol Tutumluer

The latest research findings on stress rotations caused by moving wheel loads and their effects on permanent deformation or rut accumulation in pavement granular layers are presented. Realistic pavement stresses induced by moving wheel loads were examined in the unbound aggregate base and subbase layers, and the significant effects of rotation of principal stress axes were indicated for a proper characterization of the permanent deformation behavior. To account for the rutting performances of especially thick granular layers, a comprehensive set of repeated load triaxial tests was conducted in the laboratory. Triaxial test data were obtained and analyzed from testing aggregates under various realistic in situ stress paths caused by moving wheel loading. Permanent deformation characterization models were then developed on the basis of the experimental test data to include the static and dynamic stress states and the slope of stress path loading. The models that also considered the stress path slope variations predicted the stress path dependency of permanent deformation accumulation best. In addition, multiple stress path tests conducted to simulate the extension–compression–extension type of rotating stress states under a wheel pass gave much higher permanent strains than those of the compression-only single path tests. The findings indicated actual traffic loading simulated by the multiple path tests could cause greater permanent deformations or rutting damage, especially in the loose base or subbase, when compared with deformations measured from a dynamic plate loading or a constant confining pressure type laboratory test.


2020 ◽  
Vol 57 (11) ◽  
pp. 1767-1779 ◽  
Author(s):  
Buddhima Indraratna ◽  
Mandeep Singh ◽  
Thanh Trung Nguyen ◽  
Serge Leroueil ◽  
Aruni Abeywickrama ◽  
...  

A long-term issue that has hampered the efficient operation of heavy-haul tracks is the migration of fluidized fines from the shallow soft subgrade to the overlying ballast, i.e., mud pumping. This paper presents a series of undrained cyclic triaxial tests where realistic cyclic loading conditions were simulated at low confining pressure that is typical of shallow subgrade beneath a ballast track. Subgrade soil specimens with a low-plasticity index collected from a field site with recent history of mud pumping were tested at frequencies from 1.0 to 5.0 Hz and a cyclic stress ratio (CSR) from 0.1 to 1.0. The experimental results indicate that under adverse loading conditions of critical cyclic stress ratio (CSRc) and frequency, there is upward migration of moisture and the finest particles towards the specimen top and this causes the uppermost part of the soil specimen to soften and fluidize. Conversely, a smaller value of CSR tends to maintain stability of the specimen despite the increasing number of loading cycles. It is noteworthy that for any given combination of CSR and frequency, the relative compaction has a significant influence on the cyclic behaviour of the soil and its potential for fluidization.


2010 ◽  
Vol 168-170 ◽  
pp. 286-292
Author(s):  
Hua Pan ◽  
Guo Xing Chen ◽  
Tian Sun

Cyclic triaxial and cyclic torsional shear tests were performed on undisturbed marine silty clay by the hollow cylinder apparatus, and the Young’s modulus and shear modulus were obtained respectively. Furthermore, the influence of effective confining pressure and stress ratio on dynamic Poisson’s ratio was investigated on this basis. It was found that the dynamic Poisson’s ratio increases with generalized shear strain, but decreases with increasing effective confining pressure and stress ratio. The effect of effective confining pressure and stress ratio on dynamic Poisson’s ratio was weakened as the generalized shear strain was increasing. The dynamic Poisson’s ratio was about 0.48 when the Poisson’s ratio was increased to 1.8E-2 or so, and the test was terminated. There was no shear dilatation during all tests because the Poisson’s ratios were smaller than 0.5. It indicates that the marine silty clay tested in this paper has a good stability under cyclic loads.


Sign in / Sign up

Export Citation Format

Share Document