Small Strain Deformation Characteristics of Granular Materials in Torsional Shear and Triaxial Tests with Local Deformation Measurements

Author(s):  
T. Kiyota ◽  
L. I. N. De Silva ◽  
T. Sato ◽  
J. Koseki
2000 ◽  
Vol 40 (3) ◽  
pp. 101-110 ◽  
Author(s):  
Junichi Koseki ◽  
Sadahiro Kawakami ◽  
Hiroshi Nagayama ◽  
Takeshi Sato

2015 ◽  
Vol 52 (6) ◽  
pp. 795-807 ◽  
Author(s):  
Yuanqiang Cai ◽  
Qi Sun ◽  
Lin Guo ◽  
C. Hsein Juang ◽  
Jun Wang

The loading path involving principal stress rotation (PSR) during shear is an important phenomenon encountered in many field conditions. Typically for traffic loading, both the magnitude and direction of principal stresses may vary with time due to the motion of vehicles, and the stress path can be mimicked by a heart shape in the deviatoric stress space. Conventional triaxial tests are not suitable to recreate this type of stress path in that no torsional shear stress can be applied on the test samples. To overcome this limitation, a series of tests using a hollow cylinder apparatus were conducted on sand to investigate the permanent deformation characteristics under drained conditions with different levels of confining pressure (σc), cyclic vertical stress ratio (CVSR), and cyclic torsional stress ratio (η). The results clearly show an increase in the permanent deformation with η, indicating that the PSR effect on permanent deformation cannot be ignored. Both σc and CVSR were found to also affect permanent deformation, which was more pronounced when PSR was coupled into the test. A five-parameter formulation that accounted for the effect of confining pressure, deviatoric stress, torsional shear stress, and number of loading cycles was subsequently established to analyze the permanent strain. The formulation coefficients were first determined and then used to explain the effects of stress variables on the permanent deformation. Validation studies were performed to address the adequacy of the formulation to predict permanent deformation.


2001 ◽  
Vol 123 (3) ◽  
pp. 274-280 ◽  
Author(s):  
Yanyao Jiang

A localized inhomogeneous cyclic plastic deformation phenomenon was experimentally investigated in a mild steel. Small strain gages were utilized to characterize the local deformation within the gage section and the gross deformation was measured with an extensometer. Both fully reversed symmetrical loading and asymmetrical loading with a mean stress were used in the cyclic experiments. Plastic deformation was initiated in local areas of the specimen and it propagated into the whole gage section in the specimen with increasing cyclic loading. The local inhomogeneous cyclic deformation was dependent on the loading magnitude and evolved with continued cyclic loading.


2015 ◽  
Vol 55 (8) ◽  
pp. 1575-1590 ◽  
Author(s):  
Xiaohai Xu ◽  
Yong Su ◽  
Yulong Cai ◽  
Teng Cheng ◽  
Qingchuan Zhang

2009 ◽  
pp. 288-288-15 ◽  
Author(s):  
F Tatsuoka ◽  
S Teachavorasinskun ◽  
J Dong ◽  
Y Kohata ◽  
T Sato

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Mostafa A. Ismail ◽  
Yasser E. Ibrahim

Local measurement of deformations of a soil specimen has become inevitable for accurate determination of soil stiffness in triaxial tests. Although there are now many devices that can be used to perform this task, each has its own advantages and limitations that render development of new devices with better desirable features. This paper presents an innovative device called spring deformation gauge (SDG) that has many advantages over many of the existing devices and can be readily manufactured in both research and commercial laboratories. The device is based on using a highly flexible, yet very strong metal strip of spring steel secured between two stiff, stainless steel L-shaped legs; the spring strip is provided with four strain gauges. With this arrangement, local deformation of a specimen is transferred into significant bending in the metal strip and elongation or shortening of the strain gauges. In addition to being very cost effective, the SDG is characterized by the ability to control both range and resolution of measured deformation, its linear output, and a clever pinning mechanism that protects it from being damaged when it goes out of range. Success of the SDG was demonstrated in a true K0 test on carbonate sand.


Sign in / Sign up

Export Citation Format

Share Document