scholarly journals Dynamic, In-situ, Nonlinear-Inelastic Response and Post-Cyclic Strength of a Plastic Silt Deposit

Author(s):  
Amalesh Jana ◽  
Armin W. Stuedlein

This study presents the use of controlled blasting as a source of seismic energy to obtain the coupled, dynamic, linear-elastic to nonlinear-inelastic response of a plastic silt deposit. Characterization of blast-induced ground motions indicate that the shear strain and corresponding residual excess pore pressures (EPPs) are associated with low frequency near- and far-field shear waves that are within the range of earthquake frequencies, whereas the effect of high frequency P-waves are negligible. Three blasting programs were used to develop the initial and pre-strained relationships between shear strain, EPP, and nonlinear shear modulus degradation. The initial threshold shear strain to initiate soil nonlinearity and to trigger generation of residual EPP ranging from 0.002 to 0.003% and 0.008 to 0.012%, respectively, where the latter corresponded to ~30% of Gmax. Following pre-straining and dissipation of EPPs within the silt deposit, the shear strain necessary to trigger residual excess pore pressure increased two-fold. Greater excess pore pressures were observed in-situ compared to that of intact direct simple shear (DSS) test specimens at a given shear strain amplitude. The reduction of in-situ undrained shear strength within the blast-induced EPP field measured using vane shear tests compared favorably with that of DSS test specimens.

1972 ◽  
Vol 9 (2) ◽  
pp. 127-136 ◽  
Author(s):  
M. Bozozuk

Large negative skin friction loads were observed on a 160 ft (49 m) steel pipe test pile floating in marine clay. The test pile was driven, open-ended, on the centerline of a 30 ft (9 m) high granular approach fill on the Quebec Autoroute near Berthierville. Since the installation was made in 1966 the fill has settled 21 in. (53 cm), dragging the pile down with it. Negative skin friction acting along the upper surface of the pile was resisted by positive skin friction acting along the lower end as it penetrated the underlying clay. Under these conditions the pile compressed about [Formula: see text] (2 cm). Analysis of the axial strains indicated that a peak compressive load of 140 t developed at the inflection point between negative and positive skin friction 73 ft (22 m) below the top of the pile. Negative and positive skin friction acting on the upper surface of the pile exceeded the in situ shear strength and approached the drained strength of the soil where excess pore water pressures had dissipated. At the lower end where the positive excess pore pressures were high and relative movement between the pile and the soil was large, the positive skin friction approached the remoulded strength as measured with the field vane. Skin friction was increasing, however, as positive escess pore pressures dissipated.This paper shows that skin friction loads are related to the combination of (a) in situ horizontal effective stresses, (b) horizontal stresses due to embankment loads, and (c) horizontal stresses due to differential settlement of the fill.


1991 ◽  
Vol 28 (5) ◽  
pp. 678-689
Author(s):  
Serge Leroueil ◽  
Guy Dionne ◽  
Michel Allard

The physical characteristics, the compressibility, and the consolidation of a permafrost clayey silt of Kangiqsualujjuaq, Quebec, have been studied, in the laboratory and in the field, by melting the permafrost in the foundation of an excavation. It appears that the values of the thawing settlement parameter (A0) obtained in the laboratory and in the field coincide perfectly with one another, and with those found in the literature for the same type of soil. It has also been observed, on that site, that the thawing of the permafrost, even though ice-rich, does not generate excess pore pressures. Key words: permafrost, compressibility, consolidation, laboratory, in situ. [Journal translation]


1979 ◽  
Vol 16 (4) ◽  
pp. 814-827
Author(s):  
M. Peignaud

The Laboratoire Régional des Ponts et Chaussées, Angers (France) has investigated the excess pore pressures developed during the driving of a piezometer probe at different rates on four sites. Attention is drawn to the important differences between the pore pressures measured during penetration and at rest.During driving, negative excess pore pressures are measured. When the piezometer is stopped the pore pressures become large and positive. For the soils tested, i.e., plastic to highly plastic clays, the maximum excess pore pressure at rest may be estimated from the total overburden pressure. [Journal translation]


1974 ◽  
Vol 11 (3) ◽  
pp. 423-430 ◽  
Author(s):  
Robert D. Holtz ◽  
Per Boman

A new technique is described whereby excess pore pressures induced during pile driving in soft, varved silts and clays were economically reduced to a safe level. The technique was applied to piles at a bridge site south of Stockholm, Sweden, where a small slide had occurred during pile driving. A new paper–plastic drain was attached to the wood piles during driving, and two pulling tests indicated that the drain was undamaged under normal driving conditions. The excess pore pressure generated during the driving of some 13 test piles without drains and 48 piles with drains was measured. The data indicated at least a 50% relative reduction in excess pore pressure when the drain was used. In addition, the cost of the technique was considerably less than alternative methods for dealing with dangerous excess pore water pressures resulting from piling in similar soils. The technique has been successfully applied at two other piling sites in Sweden.


2005 ◽  
Vol 42 (2) ◽  
pp. 678-682
Author(s):  
Guofu Zhu ◽  
Jian-Hua Yin

It is necessary in certain cases to estimate the progress of consolidation in a soil layer that has ceased increasing in thickness over time. In this paper, the existing excess pore pressures for two time–thickness relations are used as the "initial" pore pressures for analysing the consolidation of soil subsequent to the cessation of deposition. Average degrees of consolidation of the soil layer are presented for one-way drainage and two-way drainage boundary conditions. The average degrees of consolidation are compared with those for uniform and triangular initial excess pore pressure distributions. It is found that the average degree of consolidation for one-way drainage boundaries can be estimated using the value for the triangular distribution. The average degree of consolidation for two-way drainage boundaries is bound by the averages for both the uniform and the triangular initial excess pore pressure distributions.Key words: consolidation, deposition, drainage, settlement, soil.


Author(s):  
Jiang Tao Yi ◽  
Fook Hou Lee ◽  
Siang Huat Goh ◽  
Yu Ping Li ◽  
Xi Ying Zhang

The numerical modeling of spudcan penetration involves technical challenges posed by large soil deformation coupled with significant material non-linearity. The Lagrangian approach commonly used for solid stress analysis often does not work well with large deformations, resulting in premature termination of the analysis. Recently, the Arbitrary Langrangian Eulerian (ALE) and the Eulerian methods have been used in spudcan analysis to overcome problems caused by the soil flow and large deformation. However, most of the reported studies are based on total stress analysis and therefore shed no light on the excess pore pressures generated during spudcan installation. As a result, much remains unknown about the long-term behaviour of spudcans in the ground, which is affected by the dissipation of excess pore pressures. This paper reports an effective-stress finite element analysis of spudcan installation in an over-consolidated (OC) soft clay. The Eulerian analysis was conducted using ABAQUS/ Explicit, with the effective stress constitutive models coded via the material subroutine VUMAT. The results demonstrated the feasibility of conducting effective-stress finite element analysis for undrained spudcan penetration in OC clays. The paper discusses the flow mechanism, stable cavity depths and bearing capacity factors when spudcan installation occurs in various OC soils. It was found that the pore pressure build-up concentrates in a bulb-shaped zone surrounding the spudcan. The size of the pore pressure bulb increases with increasing penetration. The maximum excess pore pressure, which is generated near the spudcan tip, is predominantly controlled by the undrained shear strength at the tip level.


2008 ◽  
Vol 54 (184) ◽  
pp. 169-181 ◽  
Author(s):  
Jason F. Thomason ◽  
Neal R. Iverson

AbstractIf basal-water discharge and pressure are sufficiently high, a soft-bedded glacier will slip over its bed by ploughing, the process in which particles that span the ice–bed interface are dragged across the bed surface. Results of laboratory experiments indicate that resistance to ploughing can decrease with increasing ploughing velocity (velocity weakening). During ploughing at various velocities (15–400 m a−1), till was compacted in front of idealized particles, causing pore pressures there that were orders of magnitude higher than the ambient value. This excess pore pressure locally weakened the till in shear, thereby decreasing ploughing resistance by a factor of 3.0–6.6 with a six-fold increase in ploughing velocity. Characteristic timescales of pore-pressure diffusion and compaction down-glacier from ploughing particles depend on till diffusivity, ploughing velocity and sizes of ploughing particles. These timescales accurately predict the ranges of these variables over which excess pore pressure and velocity weakening occurred. Existing ploughing models do not account for velocity weakening. A new ploughing model with no adjustable parameters predicts ploughing resistance to no worse than 38% but requires that excess pore pressures be measured. Velocity weakening by this mechanism may affect fast glacier flow, sediment transport by bed deformation and basal seismicity.


2020 ◽  
Vol 14 (03) ◽  
pp. 2050015
Author(s):  
Samy Garcıáa-Torres ◽  
Gopal Santana Phani Madabhushi

Reducing the risk of structural damage due to earthquake-induced liquefaction in new and existing buildings is a challenging problem in geotechnical engineering. Drainage countermeasure techniques against liquefaction have been studied over the last decades with an emphasis on the use of vertical drains. This technique aims to allow a rapid dissipation of excess pore pressures generated in the soil during the earthquake thereby limiting the peak excess pore pressures and consequently improve the structural response. Rapid drainage in the post-earthquake period in the presence of these drains helps quick recovery of the soil strength. Recent studies propose different variations in the vertical drains arrangement to improve the excess pore pressure redistribution in the soil around structures. However, conventional arrangements for existing buildings do not achieve an adequate proximity from the drains to the soil below the foundation. To address this, the performance of inclined and vertical perimeter drain arrangements are studied in this paper. Dynamic centrifuge tests were carried out for the different arrangements in order to evaluate the excess pore pressure generation due to ground shaking and the following dissipation together with the foundation settlement and dynamic response.


Author(s):  
Gopal S. P. Madabhushi ◽  
Samy Garcia-Torres

AbstractSoil liquefaction can cause excessive damage to structures as witnessed in many recent earthquakes. The damage to small/medium-sized buildings can lead to excessive death toll and economic losses due to the sheer number of such buildings. Economic and sustainable methods to mitigate liquefaction damage to such buildings are therefore required. In this paper, the use of rubble brick as a material to construct earthquake drains is proposed. The efficacy of these drains to mitigate liquefaction effects was investigated, for the first time to include the effects of the foundations of a structure by using dynamic centrifuge testing. It will be shown that performance of the foundation in terms of its settlement was improved by the rubble brick drains by directly comparing them to the foundation on unimproved, liquefiable ground. The dynamic response in terms of horizontal accelerations and rotations will be compared. The dynamic centrifuge tests also yielded valuable information with regard to the excess pore pressure variation below the foundations both spatially and temporally. Differences of excess pore pressures between the improved and unimproved ground will be compared. Finally, a simplified 3D finite element analysis will be introduced that will be shown to satisfactorily capture the settlement characteristics of the foundation located on liquefiable soil with earthquake drains.


Sign in / Sign up

Export Citation Format

Share Document