Universal aqueous synthesis of ultra-small polymer-templated nanoparticles: synthesis optimization methodology for counterion-collapsed poly(acrylic acid)

2018 ◽  
Vol 96 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Nari Kim ◽  
Calvin C.H. Cheng ◽  
M. Cynthia Goh

A long polyelectrolyte chain collapses into a nano-sized particle upon the addition of counterions under appropriate solution conditions. This phenomenon forms the basis for a simple universal method for aqueous synthesis of ultra-small (<10 nm) metal, metal oxide, and other types of nanoparticles in the following manner: the counterion-collapsed polyelectrolyte chains are made stable by crosslinking, effectively trapping the counterions, which are subsequently chemically modified, to form metal nanoparticles via reduction or metal oxides nanoparticles via oxidation, within the collapsed polymer nanoparticle. This highly versatile platform methodology can be applied to almost any polyelectrolyte–counterion pair, making possible the rapid development of syntheses of different nanoparticles within the same chemical environment. Using poly(acrylic acid) as a model system, a methodology for the optimization of conditions for the polyelectrolyte collapse by various mono- and multi-valent metal cations is developed. The optimal counterion concentration did not correlate with ionic strength and metal ion valency and was highly variable from system to system. By monitoring the polyelectrolyte conformation using viscosity and turbidity measurements, the appropriate metal ion concentration for each nanoparticle system was determined.

2001 ◽  
Vol 79 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Catherine Morlay ◽  
Yolande Mouginot ◽  
Monique Cromer ◽  
Olivier Vittori

The possible removal of copper(II), nickel(II), or lead(II) by an insoluble crosslinked poly(acrylic acid) was investigated in dilute aqueous solution. The binding properties of the polymer were examined at pH = 6.0 or 4.0 with an ionic strength of the medium µ = 0.1 or 1.0 M (NaNO3) using differential pulse polarography as an investigation means. The highest complexing capacity of the polyacid was obtained with lead(II) at pH = 6.0 with µ = 0.1 M, 4.8 mmol Pb(II)/g polymer. The conditional stability constants of the complex species formed were determined using the method proposed by Ruzic assuming that only the 1:1 complex species was formed; for lead(II) at pH = 6.0 and µ = 0.1 M, log K' = 5.3 ± 0.2. It appeared that the binding properties of the polymer increased, depending on the metal ion, in the following order: Ni(II) < Cu(II) < Pb(II). The complexing capacity and log K' values decreased with the pH or with an increase of the ionic strength. These results were in agreement with the conclusions of our previous studies of the hydrosoluble linear analogues. Finally, with the insoluble polymer, the log K' values were comparable to those previously obtained with the linear analogue whereas the complexing capacity values expressed in mmol g-1 were slightly lower.Key words: insoluble crosslinked poly(acrylic acid), copper(II), nickel(II), and lead(II) complexation.


2017 ◽  
Vol 52 (24) ◽  
pp. 13689-13699 ◽  
Author(s):  
Li-Qiu Hu ◽  
Lin Dai ◽  
Rui Liu ◽  
Chuan-Ling Si

2004 ◽  
Vol 92 (5) ◽  
pp. 2908-2916 ◽  
Author(s):  
Bernabé L. Rivas ◽  
Benita Quilodrán ◽  
Eduardo Quiroz

2019 ◽  
Vol 158 (04) ◽  
pp. 369-382 ◽  
Author(s):  
Jörg Lützner ◽  
Klaus-Peter Günther ◽  
Anne Postler ◽  
Michael Morlock

AbstractAll metal implants in human bodies corrode which results in metal ions release. This is not necessarily a problem and represents for most patients no hazard. However, if a critical metal ion concentration is exceeded, local or rarely systemic problems can occur. This article summarizes the mechanisms of metal ion release and its clinical consequences. Several situations can result in increased metal ion release: metal-on-metal hip arthroplasties with increased wear, increased micromotion at taper interfaces, direct metal-metal contact (polyethylene wear, impingement), erroneously used metal heads after ceramic head fracture. Possible problems are in most cases located close to the concerned joint. Furthermore, there are reports about toxic damage to several organs. Most of these reports refer to erroneously used metal heads in revisions after a broken ceramic head. There is currently no evidence of carcinogenic or teratogenic effects of implants but data is not sufficient to exclude possible effects. Cobalt and chromium blood levels (favorably in whole blood) should be measured in patients with suspected elevated metal ions. According to current knowledge levels below 2 µg/l seem to be uncritical, levels between 2 and 7 µg/l are considered borderline with unknown biological consequences and levels above 7 µg/l indicate a local problem which should be further diagnosed. Metal ion levels always need to be interpreted together with clinical symptoms and imaging results.


2005 ◽  
Vol 97 (3) ◽  
pp. 1385-1394 ◽  
Author(s):  
Bernabé L. Rivas ◽  
Benita Quilodrán ◽  
Eduardo Quiroz

Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 332
Author(s):  
Yuchen Wang ◽  
Nicholas Hudson ◽  
Richard Pethrick ◽  
Carl Schaschke

Poly (acrylic acid) [PAA]-based aircraft de-icing fluids are widely used commercially but are known to be subject to the formation of insoluble gel particles within wing structures. In this study, the rheological effects of the sodium chloride, potassium formate, and calcium acetate with commercially used PAA-based fluids are reported across the temperature range of −15 to 15 °C. Calcium ions have the potential to create gel particles, reflected in the shifts in the viscosity–temperature profile, while PAA aggregation is influenced by the concentrations and compositions of sodium and potassium salts in the water used for dilution. From the data presented, it is possible to create de-icing fluid formulations with the necessary rheological characteristics from stock solutions by dilution using available water sources, providing that the ion concentration is known.


e-Polymers ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 271-278 ◽  
Author(s):  
Jie Wu ◽  
Yanmei Zhou ◽  
Yang Meng ◽  
Jiaxing Zhang ◽  
Qingbing Liu ◽  
...  

AbstractA tough double-network (DN) superabsorbent was synthesized by a two-step method using N,N-methylenebisacrylamide as a covalent cross-linker for one monomer [acrylic acid (AA)], Ca2+ (CaCl2) as an ionic cross-linker for the other monomer (sodium alginate [SA]) and ammonium peroxodisulfate as the redox initiator. The optimized experimental conditions for the absorbency in deionized water were determined according to orthogonal experiments. Unlike conventional chemical cross-linked single-network superabsorbents, SA/poly(acrylic acid) (PAA) DN superabsorbents exhibit superb mechanical properties. Compared with the tensile strength of PAA-only superabsorbents, that of SA/PAA DN superabsorbents showed an approximately 371.9% increase with increasing amount of 6 wt.% SA. We also investigated the capacity of SA/PAA DN superabsorbents to remove heavy metal ions. It was found that the addition of SA can truly increase the metal ion removal capacity of the PAA superabsorbents and that the affinity order was Pb2+>Zn2+.


Sign in / Sign up

Export Citation Format

Share Document