scholarly journals A comparison of two-dimensional and three-dimensional flow structures over artificial pool-riffle sequences

2017 ◽  
Vol 44 (12) ◽  
pp. 1084-1098 ◽  
Author(s):  
Elham Fazel Najafabadi ◽  
Hossein Afzalimehr ◽  
Jueyi Sui

Experiments have been carried out in a flume with one 2D pool-riffle sequence and one 3D pool-riffle sequence, respectively. Objectives of this study are to determine whether or not the convergence of lateral flow exists. Variations of the near-bed shear stress have been studied. The characteristics of the secondary currents along a pool-riffle sequence have been investigated. Results showed that for the 3D pool-riffle sequence, the near-bed velocity decreases along convective deceleration flow (CDF) and increases along convective acceleration flow (CAF), respectively. It is found that the shear velocities estimated from the slope of the velocity gradient in the inner layer, decrease in the CDF section, and increase in the CAF section in the 3D pool-riffle sequences. The Reynolds shear stress is highest at the CDF section along longitudinal lines with distances of 10 cm and 20 cm away from the channel wall.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1423
Author(s):  
Amir Golpira ◽  
Fengbin Huang ◽  
Abul B.M. Baki

This study experimentally investigated the effect of boulder spacing and boulder submergence ratio on the near-bed shear stress in a single array of boulders in a gravel bed open channel flume. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. Four methods of estimating near-bed shear stress were compared. The results suggested a significant effect of boulder spacing and boulder submergence ratio on the near-bed shear stress estimations and their spatial distributions. It was found that at unsubmerged condition, the turbulent kinetic energy (TKE) and modified TKE methods can be used interchangeably to estimate the near-bed shear stress. At both submerged and unsubmerged conditions, the Reynolds method performed differently from the other point-methods. Moreover, a quadrant analysis was performed to examine the turbulent events and their contribution to the near-bed Reynolds shear stress with the effect of boulder spacing. Generally, the burst events (ejections and sweeps) were reduced in the presence of boulders. This study may improve the understanding of the effect of the boulder spacing and boulder submergence ratio on the near-bed shear stress estimations of stream restoration practices.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2753
Author(s):  
Liyuan Zhang ◽  
Faxing Zhang ◽  
Ailing Cai ◽  
Zhaoming Song ◽  
Shilin Tong

Bed shear stress is closely related to sediment transport in rivers. Bed shear stress estimation is very difficult, especially for complex flow fields. In this study, complex flow field measurement experiments in a 60° bend with a groyne were performed. The feasibility and reliability of bed shear stress estimations using the log-law method in a complex flow field were analyzed and compared with those associated with the Reynolds, Turbulent Kinetic Energy (TKE), and TKE-w′ methods. The results show that the TKE, Reynolds, and log-law methods produced similar bed shear stress estimates, while the TKE-w′ method produced larger estimates than the other methods. The TKE-w′ method was found to be more suitable for bed shear stress estimation than the TKE method, but the value of its constant C2 needed to be re-estimated. In a complex, strong, three-dimensional flow field, the height of the measurement point (relative or absolute) should be re-estimated when a single point measurement is used to estimate the bed shear stress. The results of this study provide guidance for experimental measurement of bed shear stress in a complex flow field.


Author(s):  
Yan Cui ◽  
John C. Wells ◽  
Y. Quoc Nguyen

To simulate the initial formation of sedimentary bedforms, constrained to be in hydraulically smooth turbulent flows under bedload conditions, a numerical model based on Large Eddy Simulation (LES) in a doubly periodic domain has been developed. The numerical model comprises three parts. Given the instantaneous bed geometry, the bed shear stress distribution is obtained from a Large-Eddy-Simulation (LES) method coupled with an Immersed-Boundary-Method (IBM). Flux is estimated by the van Rijn’s formula [1]. Finally, evolution of the bed surface is described by the Exner equation. “Two-dimensional bed” [2] and “three-dimensional bed” models employ, respectively, transversely averaged bed shear stress and instantaneous local shear stress to estimate the bedload flux. Based on this model, the evolution of an initial sand wave has been successfully computed. Compared to the “two-dimensional” [2] model, the three-dimensional model leads to a slightly slower propagation and a smaller sand wave. The tendency of the sand wave evolution in three-dimensional model is two-dimensional during the simulated interval.


Author(s):  
G Croce ◽  
P D'Agaro

A numerical analysis of three-dimensional flow structures in a nominally two-dimensional fin geometry is presented. A sinusoidal louvred fin is considered. The heat transfer enhancement is achieved by combining boundary layer interruptions and vortical structures induced by the corrugation of the base fin. The fin shape and pitch, as well as flow conditions, are representative of typical automotive application. A wide ranging values of Reynolds number are investigated, spanning the steady laminar regime, the unsteady periodic laminar flow, and the chaotic transitional flow. Two- and three-dimensional numerical solutions are compared, looking for the onset of three-dimensional instabilities. At low values of the Reynolds number, up to the steady-unsteady flow transition, the flow is two-dimensional. As soon as unsteady oscillation appears, the simulation results show three-dimensional flow structures, even in a nominally two-dimensional geometry. The typical longitudinal vortex size is evaluated. In the periodic unsteady regime, fully three-dimensional computations yield time-averaged Nusselt number and friction factor significantly higher than those predicted by two-dimensional models. Furthermore, these flow structures induce an early transition from the periodic regime to the chaotic regime. In the chaotic regime, however, the heat transfer enhancement due to the three-dimensional flow structures is much lower.


Author(s):  
Chuang Jin ◽  
Giovanni Coco ◽  
Rafael O. Tinoco ◽  
Pallav Ranjan ◽  
Jorge San Juan ◽  
...  

1981 ◽  
Vol 110 ◽  
pp. 171-194 ◽  
Author(s):  
C. Chandrsuda ◽  
P. Bradshaw

Hot-wire measurements of second- and third-order mean products of velocity fluctuations have been made in the flow behind a backward-facing step with a thin, laminar boundary layer at the top of the step. Measurements extend to a distance of about 12 step heights downstream of the step, and include parts of the recirculating-flow region: approximate limits of validity of hot-wire results are given. The Reynolds number based on step height is about 105, the mixing layer being fully turbulent (fully three-dimensional eddies) well before reattachment, and fairly close to self-preservation in contrast to the results of some previous workers. Rapid changes in turbulence quantities occur in the reattachment region: Reynolds shear stress and triple products decrease spectacularly, mainly because of the confinement of the large eddies by the solid surface. The terms in the turbulent energy and shear stress balances also change rapidly but are still far from the self-preserving boundary-layer state even at the end of the measurement region.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Juan Du ◽  
Feng Lin ◽  
Jingyi Chen ◽  
Chaoqun Nie ◽  
Christoph Biela

Numerical simulations are carried out to investigate flow structures in the tip region for an axial transonic rotor, with careful comparisons with the experimental results. The calculated performance curve and two-dimensional (2D) flow structures observed at casing, such as the shock wave, the expansion wave around the leading edge, and the tip leakage flow at peak efficiency and near-stall points, are all captured by simulation results, which agree with the experimental data well. An in-depth analysis of three-dimensional flow structures reveals three features: (1) there exists an interface between the incoming main flow and the tip leakage flow, (2) in this rotor the tip leakage flows along the blade chord can be divided into at least two parts according to the blade loading distribution, and (3) each part plays a different role on the stall inception mechanism in the leakage flow dominated region. A model of three-dimensional flow structures of tip leakage flow is thus proposed accordingly. In the second half of this paper, the unsteady features of the tip leakage flows, which emerge at the operating points close to stall, are presented and validated with experiment observations. The numerical results in the rotor relative reference frame are first converted to the casing absolute reference frame before compared with the measurements in experiments. It is found that the main frequency components of simulation at absolute reference frame match well with those measured in the experiments. The mechanism of the unsteadiness and its significance to stability enhancement design are then discussed based on the details of the flow field obtained through numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document