An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

2014 ◽  
Vol 44 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Hakjun Rhee ◽  
Randy B. Foltz ◽  
James L. Fridley ◽  
Finn Krogstad ◽  
Deborah S. Page-Dumroese

Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by comparing it with the methods that follow the American Association of State Highway and Transportation Officials (AASHTO) standard T88-00 and the American Society for Testing and Materials (ASTM) standard D422-63. Using 33 forest road aggregate samples from the Clearwater National Forest in northern Idaho, the nested method required much less laboratory time and effort and resulted in similar PSA values, except for the 0.149 mm (No. 100) sieve, where the smallest particle-size fraction (PSF) values (1.30% and 1.39%) were observed. The nested method shows great potential for determining PSDs of the soil and aggregate material with large-sized particles and should be tested on other forest soils and road aggregates. The nested sampling and analysis method allows for the same number of samples to be collected but requires less laboratory time, making it more efficient and economical for testing the soil and aggregate material with large-sized particles such as forest road aggregate.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1232
Author(s):  
Dušan Igaz ◽  
Elena Aydin ◽  
Miroslava Šinkovičová ◽  
Vladimír Šimanský ◽  
Andrej Tall ◽  
...  

The paper presents the comparison of soil particle size distribution determined by standard pipette method and laser diffraction. Based on the obtained results (542 soil samples from 271 sites located in the Nitra, Váh and Hron River basins), regression models were calculated to convert the results of the particle size distribution by laser diffraction to pipette method. Considering one of the most common soil texture classification systems used in Slovakia (according to Novák), the emphasis was placed on the determination accuracy of particle size fraction <0.01 mm. Analysette22 MicroTec plus and Mastersizer2000 devices were used for laser diffraction. Polynomial regression model resulted in the best approximation of measurements by laser diffraction to values obtained by pipette method. In the case of particle size fraction <0.01 mm, the differences between the measured values by pipette method and both laser analyzers ranged in average from 3% up to 9% and from 2% up to 11% in the case of Analysette22 and Mastersizer2000, respectively. After correction, the differences decreased to average 3.28% (Analysette22) and 2.24% (Mastersizer2000) in comparison with pipette method. After recalculation of the data, laser diffraction can be used alongside the sedimentation methods.


2015 ◽  
Vol 13 ◽  
pp. 210-215 ◽  
Author(s):  
Olimpia Ghermec ◽  
Ionela Gabriela Bucse ◽  
Mariana Ciobanu

Human existence is dependent on the consumption of electricity and of thermal energy. One of the environmental problems is represented by the particulate matter with the diameter of less than 2.5 mm derived from combustion of coal. In order to find solutions to reduce emissions at source, the particle size distribution of the coal bottom ash after removing it from the steam boiler of the large combustion plant from Romag Halanga in Drobeta Turnu – Severin area was determined. Dry particle size distribution shows that the major fraction is one that has a particle size of 125 μm. Particle size distribution in the smallest size fraction was performed with laser diffraction particle size analyzer Brookhaven 90 Plus Nanoparticle Size Analyzer. Particle size distribution shows that in the composition of the coal bottom ash were found particles with nanometric dimensions.


2020 ◽  
Author(s):  
Zhongyuan Wang ◽  
Yongqiu Wu

&lt;p&gt;Desert (sandland) margin is the transition region from inner aeolian landforms &amp;#160;to other landforms outside, while it remains as an ambiguous conception in previous researches. Accurately delineating its boundary line and realizing the characteristics of the particle size distribution of surface aeolian sands in margin area can help us understand the formation of modern boundary of desert (sandland). In this research, the criteria of identification of the boundary were proposed and the boundary line was extracted quantitative. Then systematic analyses of grain size of aeolian sand in margin were conducted. Together with the morphologic type, activity and the geomorphological location of collected dunes, the factors controlled the particle-size distributions had also been analyzed. The results reveal the following: (1) There is notable difference in grain size characteristics of aeolian sand between inside and outside of Mu Us sandland. The outside samples are finer than inside. Additionally, the aeolian sand covering on loess is always more poorly sorted and with different grain size fraction composition. (2) The controlling factors on particle size distribution are different in different downwind margins. In southwest margin, the grain size characteristics of aeolian sand are influenced by time and degree of stabilization of sampled dune and locally topographic relief; From the estuary of Lu River to Yuxi River, sediment transport by wind is affected by topographic obstacles including both valley and loess gully. Meanwhile, the small dunefields in Loess Plateau outside of Mu Us sandland may originate from a local alluvial source; In northeast downwind margin, the grain size characteristics of aeolian sand covering on loess are determined by regional gully erosion after its deposition.&lt;/p&gt;


2005 ◽  
Vol 51 (3-4) ◽  
pp. 393-400
Author(s):  
S.-H. Sa ◽  
T. Masuda ◽  
Y. Hosoi

Characterization of the differences and algal-available fractions of P in soils, suspended solids, and bottom sediments have been the main topics of research during the past decade. However, the size distribution and properties of particulate matter in runoff have not been much studied in Japan. Here we study particle size distribution during runoff and the chemical characteristics of P in each soil size fraction and relate them to land use. The temporal variation of particulate sizes during rain events is different in each watershed. Most particles have the size in the range of 10∼100 μm. Also, the percentage of BAP in TP as well as percentage of PCOD in SS also varies temporally and spatially during runoff. To investigate how soil particles characteristics depend on land use, soil samples from two watersheds are examined. For particle size distribution and specific gravity, no significant difference among watersheds is found. However, C, N, and P content are indirectly proportional to the particle size, which means smaller particle size results in larger. H2O-extracted P, NH4Cl-extracted P, NAI-P, Apatite-P, Organic-P, and TP contents in each soil particle sample vary depending on particle size, land use, and watershed.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qing Yu ◽  
Dexin Ding ◽  
Wenguang Chen ◽  
Nan Hu ◽  
Lingling Wu ◽  
...  

The influence of microwave pretreatment on grindability of lead-zinc ore was studied through comparison analysis on the changes of particle size distribution, percentage of below 0.074 mm, energy consumption, and other indexes of grinding products before and after microwave pretreatment in the ball milling process. The results showed that the grindability of lead-zinc ore was improved obviously by microwave pretreatment. The particle size distribution curve of the grinding products was obviously higher than that of the samples without microwave irradiation. The yield of size fraction below 0.074 mm was also improved in a certain degree. Pulsed microwave irradiation was more effective than continuous microwave irradiation when other microwave parameters were consistent. The comprehensive energy consumption of lead-zinc ore pretreated by different microwave parameters was lower than that without microwave irradiation under the same grinding fineness. The total energy consumption was down by 30.1% when irradiated for 15 s at 7 kW power, and it was lower than that without microwave irradiated. The results showed that pulsed microwave pretreatment was more effective in reducing the comprehensive energy consumption of grinding process for lead-zinc ore. And water quenching after microwave irradiation can improve the grindability and reduce the energy consumption of grinding for lead-zinc ore.


2006 ◽  
Vol 55 (1) ◽  
pp. 295-304 ◽  
Author(s):  
Balázs Kovács ◽  
I. Czinkota ◽  
L. Tolner ◽  
Gy. Czinkota

Particle size distribution (PSD) is one of the most important fundamental physical properties of soils, as it determines their physical, chemical, mechanical, geotechnical, moreover environmental behaviour. Although the measurement of PSD with different techniques is commonly performed in soil laboratories, their automation and continuous PSD curve generation have not been solved yet.  However, there are some physical principles, various sensors and different data storing methods for measuring the density-time function. In the present paper a possible solution is introduced for the measurement of the soil particle density database as a function of settling time. The equipment used for this purpose is an areometer that is widely used e.g. for determining the sugar content of must, or the alcohol content of distilled spirits, etc. The device is equipped with patent pending capacitive sensors on the neck of the areometer. It measures the changes in the water levels nearby the neck of the areometer in 1 μm units with <10 μm accuracy. The typical water level changes are 3-5 cm, which makes possible a very accurate determination of particle density changes due to settling in particle size analysis. The measured signals are stored in the equipment's memory and can be downloaded to the controller computer via a modified USB port. Data evaluation can be carried out online or later. The large number of measured data points led to the introduction of a new evaluation method, the Method of FInite Tangents or shortly the “FIT Method”. The dispersed soil particle system is considered as the aggregation of many mono-disperse systems. From this it follows that the measured density-time function can be divided into grain size fractions with tangent lines drawn to finite, but optional points. These tangent lines are suitable for calculating the settling speed of a given fraction, as the changing speed of density is equal to the multiplication of settling speed and mass of the given grain size fraction. The settling speed of all fractions is calculable by using the Stokes law, so the mass of all of the floating fraction can be calculated. Because the soil suspension is a poly-disperse system, the measured density decrease can be considered as an integration of finite mono-disperse systems. From this, it follows that it can be interpreted as the sum of linear density vs. time functions. If the mass of each grain size fraction is known, the particle size distribution is calculable. The method is relatively easily programmed and the intervals of grain size fractions are freely adjustable, so with this program almost all types of particle size distribution are calculable, not only those being uniform. Using the appropriate controller and evaluation program, soil particle size distribution can be calculated immediately after downloading the measured data. This technique does not need more sample preparation than past methods. The automated reading lessens the manpower required for performing the measurement - which also reduces human error sources - and provides very detailed PSD data that has advantages, among others, like revealing multi-modality in the particle-size distribution.


2021 ◽  
Vol 7 ◽  
Author(s):  
Karin Mattsson ◽  
Frida Björkroth ◽  
Therese Karlsson ◽  
Martin Hassellöv

Fragmentation of macroplastics into microplastics in the marine environment is probably one of the processes that have generated most drive for developing the microplastics research field. Thus, it is surprising that the level of scientific knowledge on the combinative effect of oxidative degradation and mechanical stressors on fragmentation is relatively limited. Furthermore, it has been hypothesized that plastic fragmentation continues into the nanoplastic size domains, but environmentally realistic studies are lacking. Here the effects of thermooxidative aging and hydrodynamic conditions relevant for the shoreline environment on the fragmentation of expanded polystyrene (EPS) were tested in laboratory simulations. The pre-degraded EPS was cut into pieces and subjected to mechanical, hydrodynamic simulations during four-day stirring experiments. Subsamples were filtered and subsequently analyzed with light microscopy with automated image analysis particle size distribution determinations, polymer identification with Raman spectroscopy, Scanning Electron Microscopy (SEM) with automated image analysis particle size distribution. The nanoplastic size fraction was measured using nanoparticle tracking analysis. In addition, the degree of polymer oxidation was spectroscopically characterized with Fourier transform infrared (FTIR) spectroscopy. The results illustrate that fragmentation of the mesoplastic objects is observed already after 2 days, but that is more distinct after 4 days, with higher abundances for the smaller size fractions, which imply more release of smaller sizes or fragmentation in several steps. For the nanoplastic fraction, day four shows a higher abundance of released or fragmented particles than day two. The conclusions are that nanofragmentation is an important and understudied process and that standardized test protocols for both thermooxidative degradation and mechanical treatments mimicking realistic environmental conditions are needed. Further testing of the most common macro- and mesoplastic materials to assess the rates and fluxes of fragmenting particles to micro- and nanoplastic fractions should be conducted.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

Sign in / Sign up

Export Citation Format

Share Document