Tree selection and use by the polyphagous xylophage Anoplophora glabripennis (Coleoptera: Cerambycidae) in Canada

Author(s):  
Jean J. Turgeon ◽  
Michael T Smith ◽  
John Pedlar ◽  
Ronald Edward Fournier ◽  
Mary Orr ◽  
...  

Two breeding populations of the non-native Asian longhorned beetle (Anoplophora glabripennis Motschulsky), a pest of broadleaf trees in its native China, were discovered in Ontario in 2003 and 2013, respectively. Both populations were eradicated by removing all trees injured by the beetle and all uninjured trees deemed at high risk of injury. We used data collected during this removal to study host selection. Signs of A. glabripennis injury were observed on 732 stems from seven (i.e., Acer, Salix, Populus, Betula, Ulmus, Fraxinus and Tilia) of the 45 tree genera available. Complete beetle development was confirmed on only the first four of these seven genera. Most signs of injury were on the genus Acer and on trees with a diameter at 130 cm above ground ranging between 15 cm and 40 cm. On most trees, the lowest sign of injury was within three meters of the ground or within 40% of tree height. Tree height explained 63% of the variance in the location of the lowest sign of injury. Initial attacks were typically near the middle of the tree and expanded both upward and downward with successive attacks over time. We discuss how these findings could improve survey efforts for A. glabripennis.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Quan Zhou ◽  
Xudong Zhang ◽  
Linfeng Yu ◽  
Lili Ren ◽  
Youqing Luo

Abstract Background Anoplophora glabripennis (Motschulsky), commonly known as Asian longhorned beetle (ALB), is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees. In Gansu Province, northwest China, ALB has caused a large number of deaths of a local tree species Populus gansuensis. The damaged area belongs to Gobi desert where every single tree is artificially planted and is extremely difficult to cultivate. Therefore, the monitoring of the ALB infestation at the individual tree level in the landscape is necessary. Moreover, the determination of an abnormal phenotype that can be obtained directly from remote-sensing images to predict the damage degree can greatly reduce the cost of field investigation and management. Methods Multispectral WorldView-2 (WV-2) images and 5 tree physiological factors were collected as experimental materials. One-way ANOVA of the tree’s physiological factors helped in determining the phenotype to predict damage degrees. The original bands of WV-2 and derived vegetation indices were used as reference data to construct the dataset of a prediction model. Variance inflation factor and stepwise regression analyses were used to eliminate collinearity and redundancy. Finally, three machine learning algorithms, i.e., Random Forest (RF), Support Vector Machine (SVM), Classification And Regression Tree (CART), were applied and compared to find the best classifier for predicting the damage stage of individual P. gansuensis. Results The confusion matrix of RF achieved the highest overall classification accuracy (86.2%) and the highest Kappa index value (0.804), indicating the potential of using WV-2 imaging to accurately detect damage stages of individual trees. In addition, the canopy color was found to be positively correlated with P. gansuensis’ damage stages. Conclusions A novel method was developed by combining WV-2 and tree physiological index for semi-automatic classification of three damage stages of P. gansuensis infested with ALB. The canopy color was determined as an abnormal phenotype that could be directly assessed using remote-sensing images at the tree level to predict the damage degree. These tools are highly applicable for driving quick and effective measures to reduce damage to pure poplar forests in Gansu Province, China.


2004 ◽  
Vol 30 (2) ◽  
pp. 430-438 ◽  
Author(s):  
Declan J. Fallon ◽  
Leellen F. Solter ◽  
Melody Keena ◽  
Michael McManus ◽  
James R. Cate ◽  
...  

2010 ◽  
Vol 142 (1) ◽  
pp. 80-96 ◽  
Author(s):  
Jean J. Turgeon ◽  
John Pedlar ◽  
Peter de Groot ◽  
Michael T. Smith ◽  
Chuck Jones ◽  
...  

AbstractSurveys for signs of attack by Asian long-horned beetles, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), currently rely upon visual examination of trees to discover signs of attack. By embedding simulated A. glabripennis oviposition pits and exit holes on open-grown Norway maples, Acer platanoides L. (Aceraceae), we evaluated the effect of sign density, height (below or above 2.5m), and position (bole or branch) when foliage was present or absent on inspector ability to distinguish trees with or without signs. From this, we quantified detectability, or the proportion of trees correctly identified as infested, and determined the time taken to do so. Effectiveness in detecting trees with signs improved when sign density increased, when signs were below 2.5m, and when oviposition pits were located on boles and exit holes on branches. These main findings require some caveats, due to a number of significant interactions. Foliage presence/absence had no apparent influence on effectiveness; possible reasons are provided for this result. Time-to-find curves, which illustrated the proportion of inspectors who accurately identified an infested tree as a function of survey duration, revealed that for most treatment combinations, most infested trees were detected within the first 2 min of survey time. These findings provide baseline data to assist managers in designing effective protocols for ground surveys of A. glabripennis.


2020 ◽  
Vol 152 (3) ◽  
pp. 399-409
Author(s):  
Alex S. Torson ◽  
Lauren E. Des Marteaux ◽  
Susan Bowman ◽  
Meng Lei Zhang ◽  
Kevin Ong ◽  
...  

AbstractMany biological processes are partitioned among organs and tissues, necessitating tissue-specific or organ-specific analysis (particularly for comparative -omics studies). Standardised techniques for tissue identification and dissection are therefore imperative for comparing among studies. Here we describe dissection protocols for isolating six key tissues/organs from larvae of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae): the supraoesophageal ganglion, posterior midgut, hindgut, Malpighian tubules, fat body, and thoracic muscle. We also describe how to extract haemolymph and preserve whole larvae for measurements such as protein, lipid, and carbohydrate content. We include dissection protocols for both fresh-killed and previously frozen specimens. Although this protocol is developed for A. glabripennis, it should allow standardised tissue collection from larvae of other cerambycids and be readily transferrable to other beetle taxa with similar larval morphology.


Sign in / Sign up

Export Citation Format

Share Document