single sensillum
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 101 (6) ◽  
pp. 755-766
Author(s):  
R. D. Zhantiev ◽  
O. S. Korsunovskaya

Abstract Acoustic and vibrational sensitivity of single identified auditory receptors in bushcrickets was studied by electrophysiological methods. In the intermediate organ, some neurons were identified whose response to acceleration did not depend on the stimulus frequency over a significant frequency range; along with them, there were cells showing increased sensitivity to frequencies of 0.4–0.8 kHz for displacement, and/or 0.1–0.3, 1–1.2, and 1.4–3 kHz for all the vibration parameters. In addition, most of the studied receptors had a zone of increased sensitivity to highfrequency vibrations at 1.5–2.5 kHz. In the sensilla of the crista acustica, increased sensitivity was recorded at frequencies of 0.1–0.3, 0.4–0.8, 1–1.2, and 1.4–2.5 kHz. The best frequencies of a single sensillum may lie in different frequency ranges for different vibration parameters. Such differences in sensitivity to vibration acceleration, vibration velocity, and displacement, and also the different best frequencies in the receptors of the intermediate organ and the crista acustica were probably determined by differences in size, position, and morphological details of the sensilla, their own resonances, and reactions to resonance vibrations of the trachea section bearing the vibroreceptors. Thus, the chordotonal sensillum is a bifunctional mechanoreceptor which, along with auditory sensitivity, can combine the functions of both a displacement receiver and an accelerometer due to the different mechanical properties of its cells and the surrounding structures.


Author(s):  
Darya Task ◽  
Chun-Chieh Lin ◽  
Ali Afify ◽  
Hongjie Li ◽  
Alina Vulpe ◽  
...  

ABSTRACTDrosophila olfactory neurons have long been thought to express only one chemosensory receptor modality. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the chemosensory modes in Drosophila (Orco, Ir25a, Ir8a, Ir76b). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of olfactory neuron classes and is co-expressed in 64% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also expanded. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify significant changes in olfactory responses. These results suggest polymodal expression and function of chemosensory receptors is common in olfactory neurons. We present a new map of the olfactory system reflecting this polymodal expression.


2020 ◽  
Vol 57 (6) ◽  
pp. 1722-1734
Author(s):  
Fernando de Freitas Fernandes ◽  
Ana Beatriz F Barletta ◽  
Alessandra S Orfanó ◽  
Luciana C Pinto ◽  
Rafael Nacif-Pimenta ◽  
...  

Abstract The antennal sensilla and the antenna of females Nyssomyia intermedia, one of the main vectors of American cutaneous leishmaniasis, were studied by scanning electron microscopy. The main goal was to characterize the quantity, typology, and topography of the sensilla with particular attention to the olfactory types. The insects were captured in the city of Corte de Pedra, State of Bahia, Brazil, by CDC-type light traps and raised in a laboratory as a new colony. Fourteen well-differentiated sensilla were identified, among six cuticular types: trichoidea, campaniformia, squamiformia, basiconica, chaetica, and coeloconica. Of these, six sensilla were classified as olfactory sensilla due to their specific morphological features. Smaller noninnervated pilosities of microtrichiae type were also evidenced by covering all antennal segments. The antennal segments differ in shapes and sizes, and the amount and distribution of types and subtypes of sensilla. This study may foment future taxonomic and phylogenetic analysis for a better evolutionary understanding of the sand flies. Besides, it may assist the targeting of future electrophysiological studies by Single Sensillum Recording, and aim to develop alternative measures of monitoring and control of this vector.


2020 ◽  
Vol 60 (4) ◽  
pp. 876-885 ◽  
Author(s):  
Mourad Jaffar-Bandjee ◽  
Gijs Krijnen ◽  
Jérôme Casas

Synopsis Insect pectinate antennae are very complex objects and studying how they capture pheromone is a challenging mass transfer problem. A few works have already been dedicated to this issue and we review their strengths and weaknesses. In all cases, a common approach is used: the antenna is split between its macro- and microstructure. Fluid dynamics aspects are solved at the highest level of the whole antenna first, that is, the macrostructure. Then, mass transfer is estimated at the scale of a single sensillum, that is, the microstructure. Another common characteristic is the modeling of sensilla by cylinders positioned transversal to the flow. Increasing efforts in faithfully modeling the geometry of the pectinate antenna and their orientation to the air flow are required to understand the major advantageous capture properties of these complex organs. Such a model would compare pectinate antennae to cylindrical ones and may help to understand why such forms of antennae evolved so many times among Lepidoptera and other insect orders.


Sign in / Sign up

Export Citation Format

Share Document