Effects of bioporous carriers on the performance and microbial community structure in side-stream anaerobic membrane bioreactors

2020 ◽  
Vol 66 (8) ◽  
pp. 475-489 ◽  
Author(s):  
Bin Zhang ◽  
Jiao Yue ◽  
Yu Guo ◽  
Taixin Liu ◽  
Min Zhou ◽  
...  

The aim of this study was to investigate the effects of a volcanic rock porous carrier (VRPC) on sludge reduction, pollutant removal, and microbial community structure in an anaerobic side-stream reactor (ASSR). Three lab-scale membrane bioreactors (MBRs), including an anoxic–oxic MBR, which served as the control (C-MBR), an ASSR-coupled MBR (A-MBR), and an A-MBR filled with VRPC (FA-MBR) were stably and simultaneously operated for 120 days. The effect of the three reactors on the removal of chemical oxygen demand (COD) was almost negligible (all greater than 95%), but the average removal efficiency of ammonium nitrogen, total nitrogen, and total phosphorus was significantly improved by the insertion of an ASSR, especially when the ASSR was filled with VRPC. Finally, A-MBR and FA-MBR achieved 16.2% and 26.4% sludge reduction rates, with observed sludge yields of 0.124 and 0.109 g mixed liquid suspended solids/g COD, respectively. Illumina MiSeq sequencing revealed that microbial diversity and richness were highest in the VRPC, indicating that a large number of microorganisms formed on the carrier surface in the form of a biofilm. Abundant denitrifying bacteria (Azospira, Comamonadaceae_unclassified, and Flavobacterium) were immobilized on the carrier biofilm, which contributed to increased nitrogen removal. The addition of a VRPC to the ASSR successfully immobilized abundant hydrolytic, fermentative, and slow-growing microorganisms, which all contributed to reductions in sludge yield.

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 66 ◽  
Author(s):  
Yifei Wu ◽  
Hui Lin ◽  
Weizhao Yin ◽  
Sicheng Shao ◽  
Sihao Lv ◽  
...  

Currently, black-odor river has received great attention in China. In this study, the micro-nano bubble technology (MBT) was used to mitigate the water pollution rapidly and continuously by increasing the concentration of dissolved oxygen (DO) in water. During treatment, the concentration of DO increased from 0.60 mg/L to over 5.00 mg/L, and the oxidation reduction potential (ORP) also changed from a negative value to over 100.00 mV after only five days aeration. High throughput pyrosequencing technology was employed to identify the microbial community structure. At genus level, the dominant bacteria were anaerobic and nutrient-loving microbes (e.g., Arcobacter sp., Azonexus sp., and Citrobacter sp.) before, and the relative abundances of aerobic and functional microbes (e.g., Perlucidibaca sp., Pseudarcicella sp., Rhodoluna sp., and Sediminibacterium sp.) were increased after treatment. Meanwhile, the water quality was significantly improved with about 50% removal ratios of chemical oxygen demand (CODCr) and ammonia nitrogen (NH4+-N). Canonical correspondence analysis (CCA) results showed that microbial community structure shaped by COD, DO, NH4+-N, and TP, CCA1 and CCA2 explained 41.94% and 24.56% of total variances, respectively. Overall, the MBT could improve the water quality of urban black-odor river by raising the DO and activate the aerobic microbes.


2016 ◽  
Vol 221 ◽  
pp. 588-597 ◽  
Author(s):  
Roberta Ferrentino ◽  
Michela Langone ◽  
Isabella Gandolfi ◽  
Valentina Bertolini ◽  
Andrea Franzetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document