Heat transfer of three-dimensional micropolar fluid on a Riga plate

2020 ◽  
Vol 98 (1) ◽  
pp. 32-38 ◽  
Author(s):  
S. Nadeem ◽  
M.Y. Malik ◽  
Nadeem Abbas

In this article, we deal with prescribed exponential surface temperature and prescribed exponential heat flux due to micropolar fluids flow on a Riga plate. The flow is induced through an exponentially stretching surface within the time-dependent thermal conductivity. Analysis is performed inside the heat transfer. In our study, two cases are discussed here, namely prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux (PEHF). The governing systems of the nonlinear partial differential equations are converted into nonlinear ordinary differential equations using appropriate similarity transformations and boundary layer approach. The reduced systems of nonlinear ordinary differential equations are solved numerically with the help of bvp4c. The significant results are shown in tables and graphs. The variation due to modified Hartman number M is observed in θ (PEST) and [Formula: see text] (PEHF). θ and [Formula: see text] are also reduced for higher values of the radiation parameter Tr. Obtained results are compared with results from the literature.

2017 ◽  
Vol 6 (3) ◽  
Author(s):  
K. Ganesh Kumar ◽  
N.G. Rudraswamy ◽  
B.J. Gireesha ◽  
M.R. Krishnamurthy

AbstractPresent exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge–Kutta–Fehlberg fourth–fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.


2008 ◽  
Vol 86 (6) ◽  
pp. 853-855 ◽  
Author(s):  
A Ishak ◽  
R Nazar ◽  
I Pop

The unsteady laminar boundary-layer flow over a continuously stretching surface in a viscous and incompressible quiescent fluid is studied. The unsteadiness in the flow and temperature fields is caused by the time dependence of the stretching velocity and the surface heat flux. The nonlinear partial differential equations of continuity, momentum, and energy, with three independent variables, are reduced to nonlinear ordinary differential equations, before they are solved numerically by the Keller-box method. Comparison with available data from the open literature as well as the exact solution for the steady-state case of the present problem is made, and found to be in good agreement. Effects of the unsteadiness parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined.PACS No.: 47.15.Cb


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Navid Freidoonimehr ◽  
Behnam Rostami ◽  
Mohammad Mehdi Rashidi ◽  
Ebrahim Momoniat

A coupled system of nonlinear ordinary differential equations that models the three-dimensional flow of a nanofluid in a rotating channel on a lower permeable stretching porous wall is derived. The mathematical equations are derived from the Navier-Stokes equations where the governing equations are normalized by suitable similarity transformations. The fluid in the rotating channel is water that contains different nanoparticles: silver, copper, copper oxide, titanium oxide, and aluminum oxide. The differential transform method (DTM) is employed to solve the coupled system of nonlinear ordinary differential equations. The effects of the following physical parameters on the flow are investigated: characteristic parameter of the flow, rotation parameter, the magnetic parameter, nanoparticle volume fraction, the suction parameter, and different types of nanoparticles. Results are illustrated graphically and discussed in detail.


2020 ◽  
Vol 18 (2) ◽  
pp. 113-121
Author(s):  
A. El Harfouf ◽  
A. Wakif ◽  
S. Hayani Mounir

In this current work, the heat transfer analysis for the unsteady squeezing magnetohydrodynamic flow of a viscous nanofluid between two parallel plates in the presence of thermal radiation, viscous and magnetic dissipations impacts, considering Fourier heat flux model have been explored. The partial differential equations representing flow model are reduced to nonlinear ordinary differential equations by introducing a similarity transformation. The dimensionless and nonlinear ordinary differential equations of the velocity and temperatures functions obtained are solved by employing the homotopy perturbation method. The effects of different parameters on the velocity and temperature profiles are examined graphically, and numerical calculations for the skin friction coefficient and local Nusselt number are tabulated. It is found an excellent agreement in the comparative study with literature results. This present numerical exploration has great relevance, consequently a better understanding of the squeezing flow phenomena in the hydraulic lifts, power transmission, nano gastric tubes, reactor fluidization areas.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
M. R. Mohaghegh ◽  
Asghar B. Rahimi

The steady three-dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet is investigated by using similarity solution approach. The freestream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are transformed into ordinary differential equations by introducing appropriate similarity variables and an exact solution is obtained. The nonlinear ordinary differential equations are solved numerically using Runge–Kutta fourth-order method. The effects of the physical parameters like velocity ratio, fluid and thermal particle interaction parameter, ratio of freestream velocity parameter to stretching sheet velocity parameter, Prandtl number, and Eckert number on the flow field and heat transfer characteristics are obtained, illustrated graphically, and discussed. Also, a comparison of the obtained numerical results is made with two-dimensional cases existing in the literature and good agreement is approved. Moreover, it is found that the heat transfer coefficient and shear stress on the surface for axisymmetric case are larger than nonaxisymmetric case. Also, for stationary flat plat case, a similarity solution is presented and a comparison of the obtained results is made with previously published results and full agreement is reported.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
K. Vajravelu ◽  
K. V. Prasad ◽  
P. S. Datti

In this paper, we investigate the influence of temperature-dependent fluid properties on the flow and heat transfer characteristics of an electrically conducting dusty fluid over a stretching sheet. Temperature-dependent fluid properties are assumed to vary as a function of the temperature. The governing coupled nonlinear partial differential equations along with the appropriate boundary conditions are transformed into coupled, nonlinear ordinary differential equations by a similarity transformation. The resultant coupled highly nonlinear ordinary differential equations are solved numerically by a second order implicit finite difference scheme known as the Keller–Box method. The numerical solutions are compared with the approximate analytical solutions, obtained by a perturbation technique. The analysis reveals that even in the presence of variable fluid properties the transverse velocity of the fluid is to decrease with an increase in the fluid-particle interaction parameter. This observation holds even in the presence of magnetic field. Furthermore, the effects of the physical parameters on the fluid velocity, the velocity of the dust particle, the density of the dust particle, the fluid temperature, the dust-phase temperature, the skin friction, and the wall-temperature gradient are assessed through tables and graphs.


2017 ◽  
Vol 11 ◽  
pp. 110-128
Author(s):  
Shoeb R. Sayyed ◽  
B.B. Singh ◽  
Nasreen Bano

In the present study, an analytical analysis has been carried out to investigate the MHD stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet in a porous medium in the presence of thermal radiation. Similarity transformations have been employed to simplify the momentum and energy equations into coupled nonlinear ordinary differential equations. The resulting nonlinear ordinary differential equations are then solved analytically through BVPh 2.0 Mathematica package based on homotopy analysis method (HAM). Effects of various parameters such as Prandtl number, permeability parameter, magnetic parameter, suction/blowing parameter, stretching/shrinking parameter, radiation parameter and wall temperature exponent on velocity and/or temperature profiles are explored and discussed graphically. Our results have been compared with the available literature and have been found in excellent agreement. This study may have applications in metallurgy industry and aerodynamic extrusion of plastic sheet.


2018 ◽  
Vol 192 ◽  
pp. 02059 ◽  
Author(s):  
Gauri Shanker Seth ◽  
Prashanta Kumar Mandal

Present study investigates three dimensional rotating flow of Casson fluid in the presence of magnetic field over a convectively heated linear stretching sheet. Concept of nonlinear radiative heat transfer is considered. The governing nonlinear partial differential equations are converted into ordinary differential equations with the help of similarity transformation and then solved by using shooting method along with Runge-Kutta-Fehlberg integration technique. The primary and secondary velocities and temperature profiles are plotted and analysed corresponding to various pertinent flow parameters. Also, the skin friction for both directions and rate of heat transfer at the surface are computed and explained.


Sign in / Sign up

Export Citation Format

Share Document