scholarly journals Transition spectral parameters of In-like Ba, La and Ce ions

Author(s):  
Miao Wu ◽  
Zhencen He

The spectral parameters (energy levels, wavelengths, transition probabilities, line strengths and oscillator strengths) of resonance lines for Ba VIII, La IX and Ce X have been performed using the multiconfiguration Dirac-Hartree-Fock method, the contributions of quantum electrodynamics and Breit interactions correction are taken into considered. The calculated results of energy levels and wavelengths are in good agreement with experimental values and other calculation. The number of energy levels and wavelengths considered is larger than that of any other experiment values and other calculations. The transition probabilities, line strengths and oscillator strengths are also calculated where no other theoretical results and experimental values are available.

Author(s):  
Miao Wu ◽  
Zhen-Cen He

The energy levels, transition probabilities, oscillator strengths, line strengths and wavelengths of Ge-like Zr, Nb and Tc ions have been calculated using the multiconfiguration Dirac-Hartree-Fock method. The Breit interactions and quantum electrodynamics correction were taken into account. The calculated values of energy levels and wavelengths have been compared with other theoretical calculations and available experimental values, good agreements are achieved for most of the energy levels and wavelengths calculated. The number of energy levels and wavelengths considered is larger than that of any other theoretical calculations. And the transition probabilities, line strengths are also given where no other theoretical results and experimental values are available.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dhia Elhak Salhi ◽  
Soumaya Manai ◽  
Sirine Ben Nasr ◽  
Haikel Jelassi

Abstract Energy levels, wavelengths, weighted oscillator strengths, transition probabilities and lifetimes are calculated for all levels of 1s 2 and 1snl (n = 2–6) configurations of He-like cadmium ion (Cd XLVII). The calculations were carried out using three codes GRASP2018, FAC and AMBiT in order to provide theoretically the most accurate data. Transition probabilities are reported for all the E1, E2, M1 and M2 transitions. Breit interactions and quantum electrodynamics effects are included in the RCI calculations. Comparisons were made with other calculations and a good agreement was found which confirms the reliability of our results. We present some missing data for the He-like cadmium in this paper for the first time.


2016 ◽  
Vol 94 (4) ◽  
pp. 359-364 ◽  
Author(s):  
Miao Wu ◽  
Guojie Bian ◽  
Xiangfu Li ◽  
Min Xu ◽  
Quanping Fan ◽  
...  

The multi-configuration Dirac–Hartree–Fock method and active space approach are used to investigate the energy levels, hyperfine structure constants, and transition probabilities of a neutral silicon atom. The contributions of Breit interactions and quantum electrodynamics correction are considered. Compared with other theoretical and experimental values of energy levels, our values are in good agreement; the discrepancies of the majority of energy levels calculated are within 1% of experimental values, and the energy levels calculated are very close to other theoretical values. The number of energy levels we considered is larger than that of any other theoretical calculations. The values of the hyperfine structure constant A of the radioactive 29Si atom that we calculated are in good agreement with experimental values. From these results we can predict the hyperfine structure constant A of other states of 29Si where no other theoretical results are available. The transition probabilities of neutral silicon have also been calculated and discussed.


2019 ◽  
Vol 97 (7) ◽  
pp. 791-796
Author(s):  
Miao Wu ◽  
Lianlian Sun ◽  
Xiangfu Li ◽  
Ji Zhang

The multi-configuration Dirac–Hartree–Fock (MCDHF) method and the active space approach have been employed to investigate the energy levels, wavelengths, transition probabilities, and line strengths of Si-like Se ions. The contributions of Breit interaction (BI) and quantum electrodynamic (QED) correction are taken into consideration. The wavelengths, transition probabilities, and line strengths of Si-like Se ions have also been calculated. Compared with other theoretical and experimental values of these parameters, our values are in good agreement with others, and the number of energy levels we considered is larger than that of any other theoretical calculations.


Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 18 ◽  
Author(s):  
Pascal Quinet ◽  
Patrick Palmeri

The main purpose of the Database on Rare Earths At Mons University (DREAM) is to provide the scientific community with updated spectroscopic parameters related to lanthanide atoms (Z = 57–71) in their lowest ionization stages. The radiative parameters (oscillator strengths and transitions probabilities) listed in the database have been obtained over the past 20 years by the Atomic Physics and Astrophysics group of Mons University, Belgium, thanks to a systematic and extensive use of the pseudo-relativistic Hartree-Fock (HFR) method modified for taking core-polarization and core-penetration effects into account. Most of these theoretical results have been validated by the good agreement obtained when comparing computed radiative lifetimes and accurate experimental values measured by the time-resolved laser-induced fluorescence technique. In the present paper, we report on the current status and developments of the database that gathers radiative parameters for more than 72,000 spectral lines in neutral, singly-, doubly-, and triply-ionized lanthanides.


2001 ◽  
Vol 79 (7) ◽  
pp. 999-1009 ◽  
Author(s):  
C Colón ◽  
A Alonso-Medina

Radiative transition probabilities for 190 lines arising from the ns 2S1/2, np 2P1/2,3/2, nd 2D3/2,5/2, nf 2F5/2,7/2, and 6p2 (4P1/2,3/2,5/2, 2D3/2,5/2, 2P1/2,3/2, and 2S1/2) levels of Pb(II) have been calculated. Lifetimes of the above mentioned levels have been determined from the present transition probabilities. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock calculations. For the IC calculations, we use the standard method of least-square fitting of experimental energy levels by means of computer codes from Cowan. The results of calculations for radiative transition probabilities and excited states lifetimes are presented and compared with the experimental results present in the literature and with other theoretical values. There is generally good agreement between our values and the experimental data available. Analysis of the interaction shows that the level 4P5/2 of the 6s6p2 configuration presents a large contribution to the 2D5/2 level of the 6s26d configuration. This result explains the good agreement between our result and the experimental values obtained to the observed as the 6s6p2 4P5/2 – 6s 25f2F7/2 dipole-forbidden transition. PACS Nos.: 32.70^*, 32.70Fw, 32.70Cs


2018 ◽  
Vol 96 (12) ◽  
pp. 1359-1364
Author(s):  
Güldem Ürer

Studying hydrogenic ions with high Z is an occasion to understand atomic structure. It also provides a reliable test of methods used to determine atomic structures. Many fields and applications require precise atomic data. For this reason, a hydrogen-like study is performed for lawrencium (Lr102+, Z = 103). The energy levels of hydrogen-like lawrencium are calculated with both multiconfiguration Hartree–Fock (MCHF) and multiconfiguration Dirac–Fock (MCDF) methods. The calculations contain Breit–Pauli relativistic corrections in MCHF calculation and the transverse photon and quantum electrodynamics (QED) effects in MCDF calculation along with electron correlations. In addition, some transition parameters (wavelengths, λ, logarithmic weighted oscillator strengths, log(gf) value, and transition probabilities, Aki) for allowed (E1) and forbidden (E2 and M1) transitions are investigated. The results from this study are compared with only a few theoretical works, but there is no available experimental data yet for Lr102+.


2017 ◽  
Vol 95 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Meifei Mao

Based on relativistic wavefunctions from multiconfigurational Dirac–Hartree–Fock and configuration interaction calculations, energy levels, radiative rates, and wavelengths are evaluated for all levels of 3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, and 3s3d2 configurations of Al-like molybdenum ion (Mo XXX). Transition probabilities are reported for E1 and M2 transitions from the ground level. The valence–valence and core–valence correlation effects are accounted for in a systematic way. Breit interactions and quantum electrodynamics effects are estimated in subsequent relativistic configuration interaction calculations. Comparisons are made with the available data in the literature and good agreement has been found, which confirms the reliability of our results.


2020 ◽  
Vol 75 (8) ◽  
pp. 739-747
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Maofei Mei

AbstractComplete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors and E1, E2, M1, and M2 line strengths, oscillator strengths, transitions rates are reported for the low-lying 41 levels of Mo XXVIII, belonging to the n = 3 states (1s22s22p6)3s23p3, 3s3p4, and 3s23p23d. High-accuracy calculations have been performed as benchmarks in the request for accurate treatments of relativity, electron correlation, and quantum electrodynamic (QED) effects in multi-valence-electron systems. Comparisons are made between the present two data sets, as well as with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correction are found to be in a good agreement with other theoretical and experimental values. The present results are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing plasmas.


2021 ◽  
Vol 502 (3) ◽  
pp. 3780-3799
Author(s):  
W Li ◽  
A M Amarsi ◽  
A Papoulia ◽  
J Ekman ◽  
P Jönsson

ABSTRACT Accurate atomic data are essential for opacity calculations and for abundance analyses of the Sun and other stars. The aim of this work is to provide accurate and extensive results of energy levels and transition data for C i–iv. The Multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction methods were used in this work. To improve the quality of the wavefunctions and reduce the relative differences between length and velocity forms for transition data involving high Rydberg states, alternative computational strategies were employed by imposing restrictions on the electron substitutions when constructing the orbital basis for each atom and ion. Transition data, for example, weighted oscillator strengths and transition probabilities, are given for radiative electric dipole (E1) transitions involving levels up to 1s22s22p6s for C i, up to 1s22s27f for C ii, up to 1s22s7f for C iii, and up to 1s28g for C iv. Using the difference between the transition rates in length and velocity gauges as an internal validation, the average uncertainties of all presented E1 transitions are estimated to be 8.05 per cent, 7.20 per cent, 1.77 per cent, and 0.28 per cent, respectively, for C i–iv. Extensive comparisons with available experimental and theoretical results are performed and good agreement is observed for most of the transitions. In addition, the C i data were employed in a re-analysis of the solar carbon abundance. The new transition data give a line-by-line dispersion similar to the one obtained when using transition data that are typically used in stellar spectroscopic applications today.


Sign in / Sign up

Export Citation Format

Share Document