radiative transition
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 58)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Fuming Xiao ◽  
Heqi Gao ◽  
Yunxiang Lei ◽  
Wenbo Dai ◽  
Miaochang Liu ◽  
...  

AbstractOrganic near-infrared room temperature phosphorescence materials have unparalleled advantages in bioimaging due to their excellent penetrability. However, limited by the energy gap law, the near-infrared phosphorescence materials (>650 nm) are very rare, moreover, the phosphorescence lifetimes of these materials are very short. In this work, we have obtained organic room temperature phosphorescence materials with long wavelengths (600/657–681/732 nm) and long lifetimes (102–324 ms) for the first time through the guest-host doped strategy. The guest molecule has sufficient conjugation to reduce the lowest triplet energy level and the host assists the guest in exciton transfer and inhibits the non-radiative transition of guest excitons. These materials exhibit good tissue penetration in bioimaging. Thanks to the characteristic of long lifetime and long wavelength emissive phosphorescence materials, the tumor imaging in living mice with a signal to background ratio value as high as 43 is successfully realized. This work provides a practical solution for the construction of organic phosphorescence materials with both long wavelengths and long lifetimes.


Author(s):  
XinYe Wang ◽  
YiFan Zhang ◽  
Ze Yu ◽  
Yuan Wu ◽  
Dongdong Wang ◽  
...  

TADF-sensitizing-fluorescence (TSF) strategy suffered a disturbing energy loss causing by the T1 states of fluorescence dopant (FD) due to its low T1-state energy and forbidden of radiative transition. We supposed...


2021 ◽  
pp. 126-133
Author(s):  
P. Zaichko ◽  
A. Kuznetsova ◽  
A. Tsudik ◽  
V. Mansarliysky

We present the results of relativistic calculation of the radiative transition probabilities and excited states lifetimes for a heavy Rydberg atomic systems in a black-body (thermal) radiation field on example of the rubidium. As theoretical approach we apply the combined generalized relativistic energy approach and relativistic many-body perturbation theory with ab initio Dirac zeroth  approximation. There are obtained the calculational data for the radiative transition probabilities and excited states lifetimes, in particular, the rubidium atom in the Rydberg states with principal quantum number n=10-100. It is carried out the comparison of obtained theoretical data on the effective lifetime for the group of Rydberg  nS states of the rubidium atom at a temperature of T = 300K with experimental data as well as data of alternative theoretical calculation based on the improved quasiclassical model.  It is shown that the  accuracy of the theoretical data on the radiative transition probabilities and excited states lifetimes is provided by a correctness of the corresponding relativistic wave functions and accounting for the exchange-correlation effects.


2021 ◽  
Vol 257 (2) ◽  
pp. 56
Author(s):  
X. H. Zhang ◽  
G. Del Zanna ◽  
K. Wang ◽  
P. Rynkun ◽  
P. Jönsson ◽  
...  

Abstract The multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction methods are used to provide excitation energies, lifetimes, and radiative transition data for the 604 (699, 702, 704, 704, 704, and 699) lowest levels of the 3s 23p 2, 3s3p 3, 3s 23p3d, 3p 4, 3s3p 23d, 3s 23d 2, 3p 33d, 3s3p3d 2, 3s3d 3, 3p3d 3, 3p 23d 2, 3s 23p4s, 3s 23p4p, 3s 23p4d, 3s 23p4f, 3s3p 24s, 3s3p 24p, 3s3p 24d, 3s3p 24f, 3s 23d4s, 3s 23d4p, 3p 34s, 3p 34p, 3s3p3d4s, 3s 23p5s, and 3s 23p5p configurations in Cr xi, (Mn xii, Fe xiii, Co xiv, Ni xv, Cu xvi, and Zn xvii). Previous line identifications of Fe xiii and Ni xv in the EUV and X-ray wavelength ranges are reviewed by comprehensively comparing the MCDHF theoretical results with available experimental data. Many recent identifications of Fe xiii and Ni xv lines are confirmed, and several new identifications for these two ions are proposed. A consistent atomic data set with spectroscopic accuracy is provided for the lowest hundreds of levels for Si-like ions of iron-group elements of astrophysical interest, for which experimental values are scarce. The uncertainty estimation method suggested by Kramida, applied to the comparison of the length and velocity line strength values, is used for ranking the transition data. The correlation of the latter with the gauge dependency patterns of the line strengths is investigated.


2021 ◽  
Vol 75 (12) ◽  
Author(s):  
Hans-Georg Weber

Abstract The theory of large extra compactified dimensions of space (ADD-model) predicts that gravity may become strong in a compactification space of the size of a molecule and may affect the vibrational motion of a molecule. In triatomic molecules like $$\hbox {NO}_{{2}}$$ NO 2 nuclear dynamics is strongly coupled to electronic dynamics at the intersection of electronic states (conical intersection). We discuss experimental results on $$\hbox {NO}_{{2}}$$ NO 2 which reveal that the collision-free molecule optically excited into a symmetric stretch vibration mode of an electronic state with conical intersection undergoes an irreversible non-radiative transition into an asymmetric stretch vibration mode in combination with a change of the electronic state. We suggest ascribing this irreversible non-radiative transition to a gravitational perturbation on the vibrational motion in $$\hbox {NO}_{{2}}$$ NO 2 . This gravitational perturbation deactivates the upper state of the optical transition. The width of the absorption line is given by the characteristic time of the gravitational perturbation and not by the radiative lifetime of the excited molecular state. Graphical abstract


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
◽  
M. Ablikim ◽  
M. N. Achasov ◽  
P. Adlarson ◽  
S. Ahmed ◽  
...  

Abstract By analyzing 4.48 × 108ψ(3686) events collected with the BESIII detector, we observe the decays χcJ → $$ {nK}_S^0\overline{\Lambda} $$ nK S 0 Λ ¯ + c.c. (J = 0, 1, 2) for the first time, via the radiative transition ψ(3686) → γχcJ. The branching fractions are determined to be (6.65 ± 0.26stat ± 0.41syst) × 10−4, (1.66 ± 0.12stat ± 0.12syst) × 10−4, and (3.58 ± 0.16stat ± 0.23syst) × 10−4 for J = 0, 1, and 2, respectively.


2021 ◽  
Vol 96 (12) ◽  
pp. 125402
Author(s):  
Rihui Liang ◽  
Yanming Liu ◽  
Fangyan Li

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4221
Author(s):  
Andrei Racu ◽  
Marius Stef ◽  
Gabriel Buse ◽  
Irina Nicoara ◽  
Daniel Vizman

The influence of erbium ion concentration on the optical properties of BaF2:ErF3 crystals was investigated. Four ErF3 concentration (0.05, 0.08, 0.15 and 0.5 mol% ErF3)-doped BaF2 crystals were obtained using the Bridgman technique. Room temperature optical absorption in the 250–850 nm spectral range was measured, and the photoluminescence (PL) and decay times were also investigated. The Judd–Ofelt (JO) approximation was used, taking into account four absorption peaks (at 377, 519, 653 and 802 nm). The JO intensity parameters, Ωt (t = 2, 4, 6), were calculated. The influence of the ErF3 concentration on the JO parameters, branching ratio, radiative transition probability and radiative lifetime were studied. The obtained results were compared with measured values and with those reported in the literature. Under excitation at 380 nm, the well-known green (539 nm) and red (668 nm) emissions were obtained. The calculated and experimental radiative lifetimes were in millisecond range for green and red emissions. The intensity of the PL spectra varied with the Er3+ ion concentration. The emission intensity increased linearly or exponentially, depending on the ErF3 concentration. Under excitation at 290 nm, separate to the green and red emissions, a new UV emission band (at 321 nm) was obtained. Other research has not reported the UV emission or the influence of ErF3 concentration on emission behavior.


Sign in / Sign up

Export Citation Format

Share Document