Kernza intermediate wheatgrass (Thinopyrum intermedium) response to a range of vernalization conditions

Author(s):  
Kate A. Ivancic ◽  
Andres Locatelli ◽  
William F. Tracy ◽  
Valentin Daniel Picasso

Expansion of perennial grain and forage Kernza intermediate wheatgrass to temperate regions may be limited by its vernalization requirements. We compared vegetative and reproductive traits of Kernza plants grown in greenhouse under four environmental treatments of temperature and daylength for a 7 week induction period. Percent of plants which flowered and spikes per plant decreased from 83% and 8.2 at 4°C and 10 h to 15% and 0.4 at 26°C and 15 h, respectively. The variability observed suggests that there is potential for selection for reduced vernalization requirements in Kernza populations.

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1175
Author(s):  
Linda-Maria Dimitrova Mårtensson ◽  
Ana Barreiro ◽  
Jenny Olofsson

Intermediate wheatgrass (IWG) may benefit soil fertility in crop rotations. To investigate termination strategies, i.e., autumn ploughing (AP), autumn harrowing (AH) and spring harrowing (SH) on a five-year-old IWG stand, a pilot study was performed. After the treatments, beetroots were sown and the IWG plants were counted twice during the beetroot growing season. The number of IWG plants was highest (20) after the SH strategy, intermediate (14) after the AH, and lowest (3) after the conventional termination strategy, AP. After the first plant count, the plots were subject to mechanical weeding in the form of a stale seedbed (i.e., harrowing twice before sowing). At beetroot harvest, the number of IWG plants was low (3 in SH and AH, 0 in AP) and similar between the treatments. The beetroot production was highest after AP and lowest in SH, and intermediary in AH, which showed no difference from AP and SH. At beetroot harvest, the weed biomass did not differ between the termination strategies. The weeds were mainly annuals. There were no differences in soil bulk density between termination strategies. Our results show that shallow soil tillage is enough to terminate IWG, as long as it repeated. We suggest further studies that investigate the dynamics of crop sequences with IWG, and how to benefit from this crop in rotations.


2016 ◽  
Author(s):  
Ken A. Thompson ◽  
Kaitlin A. Cory ◽  
Marc T. J. Johnson

AbstractEvolutionary biologists have long sought to understand the ecological processes that generate plant reproductive diversity. Recent evidence indicates that constitutive antiherbivore defenses can alter natural selection on reproductive traits, but it is unclear whether induced defenses will have the same effect and whether reduced foliar damage in defended plants is the cause of this pattern. In a factorial field experiment using common milkweed, Asclepias syriaca, we induced plant defenses using jasmonic acid (JA) and imposed foliar damage using scissors. We found that JA-induced plants experienced selection for more inflorescences that were smaller in size (fewer flowers), while control plants only experienced a trend toward selection for larger inflorescences (more flowers); all effects were independent of foliar damage. Our results demonstrate that induced defenses can alter both the strength and direction of selection on reproductive traits, and suggest that antiherbivore defenses may promote the evolution of plant reproductive diversity.


2019 ◽  
Vol 96 (5) ◽  
pp. 927-936
Author(s):  
Yingxin Zhong ◽  
Juan Mogoginta ◽  
Joseph Gayin ◽  
George Amponsah Annor

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Sophie Held ◽  
Catrin E. Tyl ◽  
George A. Annor

Cold plasma is an emerging technology to improve microbiological safety as well as functionality of foods. This study compared the effect of radio frequency cold plasma on flour and dough properties of three members of the Triticeae tribe, soft as well as hard wheat (Triticum aestivum L.) and intermediate wheatgrass (Thinopyrum intermedium, IWG). These three flour types differ in their protein content and composition and were evaluated for their solubility, solvent retention capacity, starch damage, GlutoPeak and Farinograph profiles, and protein secondary structures. Plasma treatment resulted in dehydration of flours but did not change protein content or solubility. Farinograph water absorption increased for all flours after plasma treatment (from 56.5–61.1 before to 71.0–81.6%) and coincided with higher solvent retention capacity for water and sodium carbonate. Plasma treatment under our conditions was found to cause starch damage to the extent of 3.46–6.62% in all samples, explaining the higher solvent retention capacity for sodium carbonate. However, Farinograph properties were changed differently in each flour type: dough development time and stability time decreased for hard wheat and increased for soft wheat but remained unchanged in intermediate wheatgrass. GlutoPeak parameters were also affected differently: peak torque for intermediate wheatgrass increased from 32 to 39.5 GlutoPeak units but was not different for the other two flours. Soft wheat did not always aggregate after plasma treatment, i.e., did not aggregate within the measurement time. It was also the only flour where protein secondary structures were changed after plasma treatment, exhibiting an increase from 15.2 to 27.9% in β-turns and a decrease from 59.4 to 47.9% in β-sheets. While this could be indicative of a better hydrated gluten network, plasma-treated soft wheat was the only flour where viscoelastic properties were changed and extensibility decreased. Further research is warranted to elucidate molecular changes underlying these effects.


Sign in / Sign up

Export Citation Format

Share Document