solvent retention
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 2)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Yang Liu ◽  
Rui Han ◽  
Songyan Li ◽  
Ishaq Ahmad

To improve the thermal effects of solvents on heavy oil reservoirs and realize the combined action of multiple flooding mechanisms, such as solvent heating and extraction, without steam mixing, based on the M Block heavy oil reservoir in Canada, three sets of comparative hot solvent-assisted gravity drainage experiments under different temperatures and pressures were carried out through an indoor three-dimensional (3D) physical simulation device. The development characteristics of the solvent chamber in the hot solvent-assisted gravity drainage technology were studied under different pressures and temperatures, and the recovery factor, cumulative oil exchange rate, and solvent retention rate were analyzed. The results showed that due to the effect of gravity differentiation, the development morphology of the solvent chamber could be divided into three stages: rapid ascent, lateral expansion, and slow descent. When the temperature was constant, the reservoir pressure decreased, the recovery rate increased, the cumulative oil exchange rate increased, and the solvent retention rate decreased; when the pressure was constant, the temperature increased, the viscosity of heavy oil decreased, the recovery rate increased, the cumulative oil exchange rate increased, and the solvent retention rate was low. Additionally, the study also showed that for hot solvents in different phases, the use of hot solvent vapor not only required less injected solvent but also exhibited a high oil production rate, which shortened production time and reduced energy consumption. Moreover, the oil recovery rate was higher than 60%, the solvent retention rate was lower than 10%, and the cumulative oil exchange rate was higher than 3  t / t , which constituted better economic benefits and provided a reliable theoretical basis for onsite oilfield applications.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lambert Baij ◽  
Chun Liu ◽  
Jesse Buijs ◽  
Alba Alvarez Martin ◽  
Dorien Westert ◽  
...  

AbstractEvolon$$^\circledR$$ ® CR is increasingly used in paintings conservation for varnish removal from oil paintings. Its key benefits over traditional cotton swabs are limiting solvent exposure and reducing mechanical action on the paint surface. However, this non-woven microfilament textile was not originally engineered for conservation use and little is known about its chemical stability towards organic solvents. Moreover, the physical processes of solvent loading and release by Evolon$$^\circledR$$ ® CR, as well as solvent retention inside paint after cleaning, have not been studied. These three topics were investigated using a multi-analytical approach, aiming for an improved understanding and optimized use of Evolon$$^\circledR$$ ® CR for varnish removal. Our results show that the tissue is generally chemically and physically stable to organic solvents when exposed on timescales that are typical in conservation practice. However, a pre-treatment step of Evolon$$^\circledR$$ ® CR is necessary to avoid the release of unwanted saturated fatty acids into the paint during varnish removal. We show that the primary mechanism of solvent uptake by the fibers is adsorption rather than absorption and that the dominant factor dictating the maximum solvent load is the volume of the voids between the fibers. Finally, solvent induced dynamics after application of solvent-loaded Evolon$$^\circledR$$ ® CR within the paint film was monitored using portable laser speckle imaging on model paints. A method to quantify solvent-retention in real-time was developed and revealed that the presence of varnish on paintings results in lower dynamics of solvents within the paint in comparison to unvarnished paint. Comparing various solvents, it was found that cleaning with acetone resulted in a roughly six-fold increase in dynamics compared to ethanol and isopropanol.


2021 ◽  
Vol 8 ◽  
Author(s):  
Monika Rani ◽  
Gagandeep Singh ◽  
Raashid Ahmad Siddiqi ◽  
Balmeet Singh Gill ◽  
Dalbir Singh Sogi ◽  
...  

Agronomically important cereal crops wheat, barley, and rye of the Triticeace tribe under the genus Triticum were studied with special focus on their physical, proximal, and technological characteristics which are linked to their end product utilization. The physiochemical parameters showed variability among the three cereal grains. Lactic acid-solvent retention capacity (SRC) was found to be higher in wheat (95.86–111.92%) as compared to rye (53.78–67.97%) and barley (50.24–67.12%) cultivars, indicating higher gluten strength. Sucrose-SRC and sodium carbonate-SRC were higher in rye as compared to wheat and barley flours. The essential amino acid proportion in barley and rye cultivars was higher as compared to wheat cultivars. Barley and rye flours exhibited higher biological value (BV) owing to their higher lysine content. SDS-PAGE of wheat cultivars showed a high degree of polymorphism in the low molecular range of 27.03–45.24 kDa as compared to barley and rye cultivars. High molecular weight (HMW) proteins varied from 68.38 to 119.66 kDa (4–5 subunits) in wheat, 82.33 to 117.78 kDa (4 subunits) in rye, and 73.08 to 108.57 kDa (2–4 subunits) in barley. The comparative evaluation of barley and rye with wheat cultivars would help in the development of healthy food products.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1000
Author(s):  
Maryke Labuschagne ◽  
Carlos Guzmán ◽  
Keneuoe Phakela ◽  
Barend Wentzel ◽  
Angeline van Biljon

Drought and temperature stress can cause considerable gluten protein accumulation changes during grain-filling, resulting in variations in wheat quality. The contribution of functional polymeric components of flour to its overall functionality and quality can be measured using solvent retention capacity (SRC). The aim of this study was to determine the effect of moderate and severe drought and heat stress on SRC and swelling index of glutenin (SIG) in six durum wheat cultivars with the same glutenin subunit composition and its relation with gluten protein fractions from size exclusion high performance liquid chromatography. Distilled water, sodium carbonate and sucrose SRC reacted similarly to stress conditions, with moderate heat causing the lowest values. Lactic acid SRC and SIG reacted similarly, where severe heat stress highly significantly increased the values. SIG was significantly correlated with sodium dodecyl sulphate sedimentation (SDSS) and flour protein content (FPC) under all conditions. Lactic acid SRC was highly correlated with FPC under optimal and moderate heat stress and with SDSS under moderate drought and severe heat. SIG was negatively correlated with low molecular weight glutenins under optimal and drought conditions, and combined for all treatments. The relationship between SRC and gluten proteins was inconsistent under different stress conditions.


Author(s):  
Bartosz Zimnicki ◽  
Sylwia Mildner-Szkudlarz ◽  
Radosław Spychaj ◽  
Mateusz Gutsche

Celem opracowania było przedstawienie syntetycznej wiedzy o metodzie SRC (ang. Solvent Retention Capacity), z uwzględnianiem jej historii, dostępnych wariantów aparaturowych, zasad postępowania podczas wykonania oznaczenia oraz kierunków zastosowania. Metoda SRC została opracowana w połowie XX w. do oceny jakości mąki z pszenicy miękkiej (ang. soft wheat) pochodzącej z Ameryki Północnej. W publikacjach z XXI w. przedstawiono dane wskazujące na przydatność i szeroki zakres stosowania metody SRC także do oceny jakości mąki z klasycznej europejskiej pszenicy zwyczajnej (Triticum aestivum) oraz z mąk uzyskanych z innych zbóż, jak: jęczmień, owies, pszenżyto i żyto. Metoda SRC jest testem solwatacyjnym bazującym na ocenie zdolności pęcznienia składników mąki w środowisku wybranych roztworów. Zastosowanie w omawianej metodzie nie jednego, lecz trzech roztworów (rozcieńczonego wodnego roztworu węglanu sodu, stężonego wodnego roztworu sacharozy i rozcieńczonego wodnego roztworu kwasu mlekowego) oraz wody jest kluczowe dla oceny możliwości zastosowania mąki w poszczególnych procesach technologicznych. Wykorzystanie powinowactwa tych roztworów do głównych funkcjonalnych polimerów mąki pszennej, jakim są białka glutenowe, skrobia uszkodzona oraz pentozany, pozwala na określnie ich wpływu na właściwości mąki oraz na jakość produktów końcowych w technologii piekarskiej i ciastkarskiej. Metoda SRC umożliwia ocenę właściwości mąki, dokonanie doboru odmian czy metod uprawy, co ma istotne znaczenie w młynarstwie oraz w zakładach produkcyjnych, w których mąka pszenna jest podstawowym surowcem.


Sign in / Sign up

Export Citation Format

Share Document