THE THERMAL DECOMPOSITION OF HYDROGEN PEROXIDE VAPOUR

1945 ◽  
Vol 23b (5) ◽  
pp. 167-182 ◽  
Author(s):  
Bruce E. Baker ◽  
C. Ouellet

The kinetics of the decomposition of hydrogen peroxide in the vapour state have been studied by a manometric method, with pure hydrogen peroxide at a concentration of about 99.5%. The temperature coefficient of the reaction has been measured for the first time. The pressures ranged from 1 to 2 cm. of mercury and the temperatures from 70° to 200 °C. Pyrex reaction vessels of various sizes and shapes, and also a fused Pyrex and a soda-glass vessel, were used. The reaction was purely heterogeneous, of the first order up to 140 °C. but more complicated at higher temperatures. Identical vessels yielded consistent results. The rates were not affected by air, carbon dioxide, or water vapour, but they varied greatly with the size and shape of the vessel. The reaction was very slow on fused Pyrex and very rapid on soda-glass. In one vessel, the temperature coefficient became negligible above 120 °C. No explosion was detected up to 335 °C. at a pressure of 18 cm. of mercury. The apparent activation energies in various vessels ranged from 13.5 to 18.5 kcal. per mole. A tentative reaction mechanism is suggested.

1976 ◽  
Vol 29 (2) ◽  
pp. 443 ◽  
Author(s):  
MA Haleem ◽  
MA Hakeem

Kinetic data are reported for the decarboxylation of β-resorcylic acid in resorcinol and catechol for the first time. The reaction is first order. The observation supports the view that the decomposition proceeds through an intermediate complex mechanism. The parameters of the absolute reaction rate equation are calculated.


1947 ◽  
Vol 25b (2) ◽  
pp. 135-150 ◽  
Author(s):  
Paul A. Giguère

The decomposition of hydrogen peroxide vapour has been investigated at low pressures (5 to 6 mm.) in the temperature range 50° to 420 °C., for the purpose of determining the effect of the nature and treatment of the active surfaces. The reaction was followed in an all-glass apparatus and, except in one case, with one-litre round flasks as reaction vessels. Soft glass, Pyrex, quartz, and metallized surfaces variously treated were used. In most cases the decomposition was found to be mainly of the first order but the rates varied markedly from one vessel to another, even with vessels made of the same type of glass. On a quartz surface the decomposition was preceded by an induction period at low temperatures. Fusing the glass vessels slowed the reaction considerably and increased its apparent activation energy; this effect was destroyed by acid washing. Attempts to poison the surface with hydrocyanic acid gave no noticeable result. The marked importance of surface effects at all temperatures is considered as an indication that the reaction was predominantly heterogeneous under the prevailing conditions. Values ranging from 8 to 20 kcal. were found for the apparent energy of activation. It is concluded that the decomposition of hydrogen peroxide vapour is not very specific as far as the nature of the catalyst is concerned.


1981 ◽  
Vol 59 (4) ◽  
pp. 718-722 ◽  
Author(s):  
Yoshiro Ogata ◽  
Kazushige Tanaka

The oxidation of dimethyl sulfoxide (DMSO) by hydrogen peroxide in the presence of a catalytic amount of sodium tungstate (Na2WO4) has been studied kinetically by means of iodometry of hydrogen peroxide. The reaction is first-order with respect to the substrate and the catalyst, but independent of the concentration of hydrogen peroxide which is present in excess of the catalyst. The polarographic study implies that in solutions two main kinds of peroxytungstic acids (H2WO5 and H2WO8) are formed which contain active oxygen in ratios (active oxygen):(Na2WO4) of 1:1 and 4:1, respectively. The effect of acidity on the oxidation rate and a probable mechanism involving a rate-determining attack of peroxytungstic acids are discussed.


1987 ◽  
Vol 65 (2) ◽  
pp. 251-255 ◽  
Author(s):  
Raymond A. Heller ◽  
Richard Weiler

Kinetic studies of the reaction of p-dinitrobenzene with H2O2 and NaOH in 10%, 30%, and 50% aqueous dioxane have been carried out at 30.0 °C. The reaction involves the formation of a reasonably stable intermediate which absorbs strongly in the visible region, with the rate of formation being about 18 times faster than the rate of conversion to final product which is p-nitrophenol. Proton and 13C nmr spectra of the kinetic solution provide strong evidence that the intermediate is p-nitrophenyl hydroperoxide, apparently the first time that a true aryl peroxide species has been identified.


1975 ◽  
Vol 53 (16) ◽  
pp. 2490-2497 ◽  
Author(s):  
José L. Arnau ◽  
Paul A. Giguère

The kinetics of oxygen evolution on warming the trapped products (at −196 °C) from water or hydrogen peroxide vapor dissociated in a glow discharge were studied by the manometric method. Under closely controlled conditions it was possible to distinguish clearly the decomposition of the two intermediates, H2O3 and H2O4. The latter begins to decompose measurably following crystallization of the glassy solid at about −115°; the trioxide decomposes readily between −50 and −35°. Typically, the yields of H2O3 from dissociated water vapor were of the order of 3 to 5 mol%; those of H2O4, only about one-tenth as much. Varying the distance between the microwave discharge and the cold trap was found to affect differently the yields of the various products. Those of water and peroxide showed a simple, direct correlation; the minor constituents H2O3 and H2O4 followed entirely different patterns. Only a small fraction of the peroxide is formed via the H2O4 intermediate in these systems. Less water, and more of the higher oxides, were obtained from dissociated hydrogen peroxide than from water vapor.The deuterated systems showed some unusual isotope effects. The yields of D2O3 were always higher (up to twice and even more) than those of H2O3 under similar conditions. The other products showed little or no such effect, except for occluded oxygen and ozone which decreased by about half. Finally, the deuterium polyoxides decompose at slightly higher temperatures (10 to 15°) than their hydrogen analogs. Mechanisms are proposed for the formation and decomposition of the polyoxides.


2008 ◽  
Vol 71 (2) ◽  
pp. 333-338 ◽  
Author(s):  
SA XU ◽  
THEODORE P. LABUZA ◽  
FRANCISCO DIEZ-GONZALEZ

The combined effect of heat and hydrogen peroxide (HP) on the inactivation of avirulent Bacillus anthracis spores (Sterne strain 7702; strain ANR-1, an avirulent Ames derivative lacking the pXO2 plasmid; and strain 9131, a plasmid-less Sterne strain) was evaluated in milk. The study temperature ranged from 90 to 95°C, and the concentration of added HP varied from 0.05 to 0.5%. Decimal reduction times (D-values) were determined using a sealed capillary tube technique. The mean D- and z-values of hydrated freeze-dried spores of all three strains in milk ranged from 550 s at 90C to180s at 94°C and from 8.6 to 9.0°C, respectively. When 0.05% HP was added to the milk, the D-values were decreased at least threefold, and at 0.5% HP the D-values ranged from 1 to 10 s. At 90°C, all three strains had similar D-values when 0.05% HP was added. Increasing the concentration of HP to 0.5% had a greater reducing effect on the D-value for strain 7702 than on the values for strains ANR-1 and 9131. The rate of inactivation of each strain followed first-order reaction kinetics at each temperature-peroxide combination. Equations in the form of D = Constant × (HP concentration)n had R2 values greater than 0.97 for strains ANR-1 and 7702 and of at least 0.7 for strain 9131. This study suggests that a combination of high temperature (from 90 to 95°C) and HP could be used for inactivation of B. anthracis spores in the event of deliberate contamination of milk such that the contaminated milk could be disposed of safely.


2008 ◽  
Vol 5 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Mansur Ahmed ◽  
K. Subramani

Hydrogen peroxide oxidation of pentaamminecobalt(III) complexes ofα-hydroxy acids at 35°C in micellar medium has been attempted. In this reaction the rate of oxidation shows first order kinetics each in [cobalt(III)] and [H2O2]. Hydrogen peroxide induced electron transfer in [(NH3)5CoIII-L]2+complexes ofα-hydroxy acids readily yields 100% of cobalt(II) with nearly 100% of C-C bond cleavage products suggesting that it behaves mainly as one equivalent oxidant in micellar medium. With unbound ligand also it behaves only as C-C cleavage agent rather than C-H cleavage agent. With increasing micellar concentration an increase in the rate is observed.


2019 ◽  
Vol 80 (1) ◽  
pp. 126-133
Author(s):  
Hamza Amaouche ◽  
Salima Chergui ◽  
Farid Halet ◽  
Ahmed Réda Yeddou ◽  
Abdelmalek Chergui ◽  
...  

Abstract This work is dedicated to the removal of free cyanide from aqueous solution through oxidation with hydrogen peroxide H2O2 catalyzed by copper oxide nanoparticles. Effects of initial molar ratio [H2O2]0/[CN−]0, catalyst dose, temperature, pH and the catalyst stability on cyanide removal have been investigated. The use of copper oxide has improved the reaction rate showing catalytic activity. The cyanide removal efficiency was increased from 60% to 94% by increasing in the dose of catalyst from 0.5 g/L to 5.0 g/L. Increasing the temperature from 20 °C to 35 °C promotes cyanide removal and the four successive times re-use of catalyst shows good stability. Kinetics of cyanide removal was found to be of pseudo-first-order with respect to cyanide. The rate constants have been determined.


1960 ◽  
Vol 38 (10) ◽  
pp. 1891-1900 ◽  
Author(s):  
D. J. Worsfold ◽  
S. Bywater

A study of the kinetics of the initiation and propagation reactions in the polymerization of styrene by butyllithium in benzene solution has been made. The initiation has been shown to be first order in styrene and 0.155 order in butyllithium, the propagation to be first order in styrene and half order with respect to active chain ends. The apparent activation energies of the two reactions have been shown to be 18,000 calories and 14,300 calories respectively. The ultraviolet absorption spectra of colored species produced has been measured and compared with others found in similar systems.


Sign in / Sign up

Export Citation Format

Share Document