THE SIGNIFICANCE OF AN ABSORPTION BAND AT 968 CM.−1 IN THE INFRARED SPECTRUM OF METHYL ISOLINOLEATE

1949 ◽  
Vol 27b (7) ◽  
pp. 610-615 ◽  
Author(s):  
H. W. Lemon ◽  
C. K. Cross

The infrared absorption spectrum of methyl isolinoleate, separated from the methyl esters of hydrogenated linseed oil fatty acids, has a well defined absorption band with maximum absorption at about 968 cm.−1 As an identical band was found in the spectra of fatty acids or esters after isomerization with selenium, it is attributed to the presence of double bonds with a trans-configuration. It was found that the same band was present in the spectra of samples taken during hydrogenation of oils, and that its intensity increased to a maximum, then decreased as hydrogenation proceeded. It is concluded that hydrogenation is accompanied by a cis-to-trans change in some of the double bonds of the fatty acids, and that methyl isolinoleate has at least one double bond with a trans-configuration.

2011 ◽  
Vol 76 (4) ◽  
pp. 591-606 ◽  
Author(s):  
Mihail Ionescu ◽  
Zoran Petrovic

Novel bio-based compounds containing phenols suitable for the synthesis of polyurethanes were prepared. The direct alkylation of phenols with different vegetable oils in the presence of superacids (HBF4, triflic acid) as catalysts was studied. The reaction kinetics was followed by monitoring the decrease of the double bond content (iodine value) with time. In order to understand the mechanism of the reaction, phenol was alkylated with model compounds. The model compounds containing one internal double bond were 9-octadecene and methyl oleate and those with three double bonds were triolein and high oleic safflower oil (82% oleic acid). It was shown that the best structures for phenol alkylation are fatty acids with only one double bond (oleic acid). Fatty acids with two double bonds (linoleic acid) and three double bonds (linolenic acid) lead to polymerized oils by a Diels Alder reaction, and to a lesser extent to phenol alkylated products. The reaction product of direct alkylation of phenol with vegetable oils is a complex mixture of phenol alkylated with polymerized oil (30-60%), phenyl esters formed by transesterification of phenol with triglyceride ester bonds (<10 %) and unreacted oil (30%). The phenolated vegetable oils are new aromatic-aliphatic bio-based raw materials suitable for the preparation of polyols (by propoxylation, ethoxylation, Mannich reactions) for the preparation of polyurethanes, as intermediates for phenolic resins or as bio-based antioxidants.


1964 ◽  
Vol 21 (2) ◽  
pp. 247-254 ◽  
Author(s):  
R. G. Ackman

Consideration of recent analytical data supports the conclusion that the longer-chain polyunsaturated fatty acids of marine origin are all structurally homogeneous in that the double bonds are cis, the double bonds methylene interrupted, and that, with the exception of the C16 chain length, the ultimate double bond will normally be three, six or nine carbon atoms removed from the terminal methyl group.


Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 558-562 ◽  
Author(s):  
Frank A. Manthey ◽  
Edward F. Szelezniak ◽  
Zbigniew M. Anyszka ◽  
John D. Nalewaja

Experiments were conducted to determine the effect of triglycerides, free fatty acids (FFA), and fatty acid methyl esters (FAME) on the foliar absorption, translocation, and phytotoxicity of quizalofop. Absorption, translocation, and phytotoxicity of quizalofop in oats were greater when quizalofop was applied with FFA or FAME than with their respective triglycerides. Triglycerides and FFA generally enhanced quizalofop absorption and translocation more when they contained unsaturated than saturated fatty acids. Methylation of the fatty acids reduced differences among fatty acids, but methyl stearate and methyl linolenate enhanced absorption of quizalofop less than the other FAME for oats and yellow foxtail. Quizalofop absorption and phytotoxicity to oats were greater when applied with sunflower oil, sunflower oil FFA, and sunflower oil FAME than with the corresponding linseed oil derivatives. Emulsifier generally reduced differences between linseed oil and sunflower oil derivatives in their enhancement of absorption, translocation, and phytotoxicity of quizalofop.


1956 ◽  
Vol 14 ◽  
pp. 228-234 ◽  
Author(s):  
Sie Swan Tiong ◽  
H.I. Waterman ◽  
C. Boelhouwer

1953 ◽  
Vol 31 (10) ◽  
pp. 952-957 ◽  
Author(s):  
Barry P. Moore ◽  
Léo Marion

The alkaloid hitherto described as obscurine has been shown to consist of a mixture of two bases, α-obscurine (C17H26ON2) and β-obscurine (C17H24ON2). Dehydregenation of α-obscurine by heating with palladium-charcoal gives rise to 7-methylquinoline and 6-methyl-α-pyridone. The infrared absorption spectrum of the base shows absorption bands indicative of a carbony and of a secondary amino group, possibly in a cyclic lactam, while absorption in the ultraviolet indicates the presence of a double bond conjugated with the carbonyl group. β-Obscurine on the other hand contains an α-pyridone ring as shown by its infrared absorption spectrum and also by the similarity of its ultraviolet absorption spectrum with that of 6-methyl-α-pyridone.


Author(s):  
Alica Bartošová ◽  
Tomáš Štefko

Abstract The aim of the paper was to study and research the application of processing gas chromatographic method for the rapid and accurate determination of the composition of different types of oils, such as substances with the possibility of an adverse event spontaneous combustion or self-heating. Tendency to spontaneous combustion is chemically characterized mainly by the amount of unsaturated fatty acids, which have one or more double bonds in their molecule. Vegetable oils essentially consist of the following fatty acids: palmitic, stearic, oleic, linoleic, and linoleic. For the needs of assessment, the fire hazard must be known, in which the double bond is present, as well as their number in a molecule. As an analytical method, GCMS was used for determination of oils content. Three types of oil were used - rapeseed, sunflower, and coconut oil. Owing to the occurrence of linoleic acid C18:2 (49.8 wt.%) and oleic acid C18:1 (43.3 wt.%) with double bonds, sunflower oil is the most prone to self-heating. The coconut and rapeseed oils contain double bond FAME in lesser amount, and their propensity to self-heating is relatively low.


Author(s):  
Girma Biresaw ◽  
Terry A. Isbell ◽  
Steven C. Cermak

Estolides are biobased materials obtained from synthesis of ingredients derived from agricultural products. They are oligoesters obtained by the reaction of fatty acids and/or methyl esters with a double bond. By varying the chemistries of the starting materials and the reaction conditions, estolides of varying chemical structures, and physical properties are obtained. Estolides have been found to have suitable properties for some lubrication applications. However, the effect of estolide chemical/physical characterstics on its tribological properties have yet to be understood. In this work, the effect of estolide physical/chemical variability on its film-forming properties is examined.


2017 ◽  
Vol 63 (4) ◽  
pp. 26-33 ◽  
Author(s):  
Grażyna Silska

Summary Introduction: Polish oilseed and flaxseed collection is a source of genotypes containing very high amounts of α-linolenic acid. Objective: The objective of the study is to test the seeds for the fat content and fatty acids composition in the oil pressed from the 9 tested accessions of flax (Linum usitatissimum L.). Our goal is to promote the Polish flax collection, which seeds are unique as one of the richest sources of α-linolenic acid. Methods: Assays to determine the content of fat and fatty acids composition in linseed oil were performed at the IHAR-PIB Biochemical Laboratory in Poznań. The fat content was determined by infrared analysis (calibration performed on the basis of seed sample at IHAR-PIB in Poznań) by means of a NIRS 6500 spectrophotometer with a reflection detector within the range of 400-2500 nm. The composition of fatty acids was determined by means of a method proposed by Byczyńska and Krzymański (1969), based on gas chromatography of methyl esters of fatty acids contained in linseed oil. The following varieties of flax were investigated: Tabare (INF00111), Szegedi 30 (INF00427), Olin (INF 00444), Redwood 65 (INF00523), Dufferin (INF00540), AC Mc Duff (INF00648), Alfonso Inta (INF00683), Olinette (INF00687), Royale (INF00689). Results: The content of α-linolenic acid (ALA, C18:3) in evaluated genotypes of flax ranged from 48.9 (Royale) to 59.9% (Alfonso Inta). Content of linoleic acid (LA, C18:2) in evaluated genotypes of flax ranged from 12.4 (Tabare) to 17.1% (AC Mc Duff). The content of oleic acid (OA, C18:1) of 9 accession of flax ranged from 17.1 (Alfonso Inta) to 26.7% (Royale). The content of stearic acid in evaluated genotypes of flax ranged from 2.3 (Alfonso Inta) to 5.0% (Tabare, Szegedi 30) and the content of palmitic acid ranged from 4.7 (Dufferin) to 6.0% (Olin). The content of fat ranged from 42.7 (Olin) to 52.0% (AC Mc Duff). The fatty acid ratio n-6/n-3 ranged from 0.23/1 (Tabare) to 0.32/1 (AC Mc Duff).


Sign in / Sign up

Export Citation Format

Share Document