scholarly journals Geochemistry of rare earth elements in soils under different land uses in a typical karst area, Guizhou Province, Southwest China

Author(s):  
Guilin Han ◽  
Zhaoliang Song ◽  
Yang Tang
2020 ◽  
Vol 10 (3) ◽  
pp. 858 ◽  
Author(s):  
Zhang Liankai ◽  
Ji Hongbing ◽  
Wang Shijie ◽  
Luo Gang ◽  
Liu Xiuming ◽  
...  

Research on weathered crusts on carbonate rock is essential for paleoenvironmental studies in karst areas. Terra rossa, widely distributed in tropical karst areas, has not been studied in terms of its material sources and geochemistry. Two typical terra rossa profiles on dolomite (SC profile located at Sang Cai, Hoa Binh province) and limestone (TG profile located at Tong Gia, Lao Cai province) in Northern Vietnam were selected to examine the geochemical characteristics and the evolutionary processes of rare earth elements (REEs). Chondrite and bedrock normalized patterns indicated that these two profiles are in situ weathering crusts, meaning they are the residual material remaining after chemical weathering of the lower carbonate rocks. The average value of total REE in the SC profile is 381.19 ppm, which is 30 times higher than the bedrock. In the TG profile, the value is 386.26 ppm, 13 times higher than the bedrock. Compared with the profiles in nearby subtropical areas in Southeast China, the REE enrichment coefficients of terra rossa in Northern Vietnam are much higher. The REE depletion was also different between the SC and TG profiles. The light and heavy REE fractionations in the SC profile are higher than in the TG profile. Paleoclimate inversion analysis shows that the SC profile experienced a stable oxidation condition, whereas the TG profile was subjected to several reducing environments since a weathering crust formed.


Author(s):  
Jue Zhang ◽  
Zhuhong Wang ◽  
Qixin Wu ◽  
Yanling An ◽  
Huipeng Jia ◽  
...  

Rare earth elements (REEs), known as “industrial vitamins”, are widely used in medical treatment, industry, agriculture, etc. However, with the increasing demand for REEs, excess REEs, such as gadolinium (Gd), are considered micropollutants in the environment. In this paper, the distributions of dissolved REEs were analyzed in three small streams, in order to determine the extent and occurrence of Gd anomalies. The shale-normalized REE patterns in the three streams were less smooth with heavy REEs higher than light REEs, for a weak reaction of the heavy REE complexes. A negative Ce (cerium) anomaly and positive samarium (Sm) and europium (Eu) anomalies were observed in the three streams and the negative Ce anomaly was affected by the pH of the alkaline rivers. However, a positive Gd anomaly was found in only a typical urban small stream, Jinzhong. With a population of approximately 60,000, Jinzhong runs by a hospital and through wastewater treatment plants (WWTPs). The concentrations of Gd in Jinzhong ranged from 1.54 to 86.65 ng/L with high anthropogenic Gd proportions (63.64%–98.07%). Anthropogenic Gd showed significant seasonal variations and distinct spatial disparities from upstream to downstream, and it was associated with certain ions such as Cl−. Anthropogenic Gd could be attributed to gadopentetic acid (Gd-DTPA), which is used in magnetic resonance imaging (MRI) in hospitals. This type of Gd was shown to be correlated with municipal wastewater. Due to the high stability and low particulate reactivity in water, anthropogenic Gd has great potential to serve as a tracer to prove the presence of medical wastewater.


Author(s):  
Zhenming Zhang ◽  
Xianfei Huang ◽  
Yunchao Zhou ◽  
Jiachun Zhang ◽  
Xubo Zhang

The assessment of soil organic carbon (SOC) in mountainous karst areas is very challenging, due to the high spatial heterogeneity in SOC content and soil type. To study and assess the SOC storage in mountainous karst areas, a total of 22,786 soil samples were collected from 2,854 soil profiles in Guizhou Province in Southwest China. The SOC content in the soil samples was determined by the oxidation of potassium dichromate (K2Cr2O7), followed by titration with iron (II) sulfate (FeSO4). The SOC storage was assessed based on different land uses. The results suggested that the average SOC density in the top 1.00 m of soil associated with different land uses decreased in the following order: Croplands (9.58 kg m−2) > garden lands (9.07 kg m−2) > grasslands (8.07 kg m−2) > forestlands (7.35 kg m−2) > uncultivated lands (6.94 kg m−2). The SOC storage values in the 0.00–0.10 m, 0.00–0.20 m, 0.00–0.30 m and 0.00–1.00 m soil layers of Guizhou Province were 0.50, 0.87, 1.11 and 1.58 Pg, respectively. The SOC in the top 0.30 m of soil accounted for 70.25% of the total within the 0.00–1.00 m layer in Guizhou Province. It was concluded that assessing SOC storage in mountainous karst areas was more accurate when using land use rather than soil type. This result can supply a scientific reference for the accurate assessment of the SOC storage in the karst areas of southwestern China, the islands of Java, northern and central Vietnam, Indonesia, Kampot Province in Cambodia and in the general area of what used to be Yugoslavia, along with other karst areas with similar ecological backgrounds.


2019 ◽  
Vol 11 (18) ◽  
pp. 4963 ◽  
Author(s):  
Qian Zhang ◽  
Guilin Han ◽  
Man Liu ◽  
Lingqing Wang

Soil samples from eight soil profiles under different land-use types were collected at the Puding Karst Critical Zone Observatory, Southwest China, to investigate the distribution, fractionation, and controlling factors of rare earth elements (REEs). The total REEs contents in topsoil ranged from 149.97 to 247.74 mg kg−1, the contents in most topsoil were higher than local soil background value (202.60 mg kg−1), and the highest content was observed in topsoil under cropland. The REEs contents in surface soils from lower slopes sites were higher than that of middle and upper slope sites, and the highest contents were observed in cropland. The PAAS-normalized REEs pattern in soils showed MREEs significantly enriched relative to LREEs and HREEs, and HREEs were enriched relative to LREEs. The results showed that clay content, pH, soil organic carbon, total phosphorus, and Fe content were the main factors influencing the distribution of REEs in karst soils, and soil organic carbon (SOC), Fe content showed better linear relationship with REEs.


2011 ◽  
Vol 85 (3) ◽  
pp. 712-722 ◽  
Author(s):  
Liuting SONG ◽  
Congqiang LIU ◽  
Zhongliang WANG ◽  
Xiangkun ZHU ◽  
Yanguo TENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document