iron isotope
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 80)

H-INDEX

60
(FIVE YEARS 6)

2021 ◽  
Vol 139 ◽  
pp. 104431
Author(s):  
Yong-Wen Zhang ◽  
Hong-Rui Fan ◽  
Fang-Fang Hu ◽  
Xuan Liu ◽  
Lie-Wen Xie ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1356
Author(s):  
Chenglai Deng ◽  
Changqing Hu ◽  
Ming Li ◽  
Wu Li

There has been little research on the metal isotopic composition of adakitic rock. The main objective of our investigation was to obtain more knowledge on the iron isotopic composition of adakitic rocks and provide new evidence for the genesis of Shangcheng pluton from an iron isotope perspective. The Dabie orogen is divided into eastern and western areas by the Shangcheng-Macheng fault, and the Shangcheng pluton is located in the western Dabie orogen area. The iron isotopic composition of these rocks ranges from 0.08‰ to 0.20‰ (2SD, n = 3). The δ56Fe values of two rocks from the SGD (Sigudun) unit are relatively low (0.11 ± 0.03‰ and 0.08 ± 0.04‰), while the δ56Fe values of the other samples are basically consistent (0.18–0.2‰). Evidence from elemental geochemical characteristics and petrogenesis defines the Shangcheng pluton as adakitic rocks. Our investigation on the elemental and isotopic compositions hints that the enrichment of heavy iron isotopes cannot be explained by weathering/alteration and fluid exsolution. Fractional crystallization of magnetite may account for the enrichment of light iron isotopes in two rocks from the SGD unit, while the fractional iron isotope trend in the other five samples can be explained by Δ56Fecrystal-melt = ~0.035‰. Two investigated rocks from SGD units may have been derived from the partial melting of amphibolite, while the other five samples may have been derived from the partial melting of eclogite containing 10–15% garnet.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soumya Ray ◽  
Laurence A. J. Garvie ◽  
Vinai K. Rai ◽  
Meenakshi Wadhwa

AbstractIron isotopes record the physical parameters, such as temperature and redox conditions, during differentiation processes on rocky bodies. Here we report the results of a correlated investigation of iron isotope compositions and silicon contents of silicon-bearing metal grains from several aubritic meteorites. Based on their Fe isotopic and elemental Si compositions and thermal modelling, we show that these aubrite metals equilibrated with silicates at temperatures ranging from ~ 1430 to ~ 1640 K and likely sampled different depths within their asteroidal parent body. The highest temperature in this range corresponds to their equilibration at a minimum depth of up to ~ 35 km from the surface of the aubrite parent body, followed by brecciation and excavation by impacts within the first ~ 4 Myr of Solar System history.


Author(s):  
Ruifeng Zhang ◽  
Laramie Jensen ◽  
Jessica Fitzsimmons ◽  
Robert M. Sherrell ◽  
Phoebe Lam ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Emmanuelle Albalat ◽  
Thibault Cavey ◽  
Patricia Leroyer ◽  
Martine Ropert ◽  
Vincent Balter ◽  
...  

Hereditary hemochromatosis is a genetic iron overload disease related to a mutation within the HFE gene that controls the expression of hepcidin, the master regulator of systemic iron metabolism. The natural stable iron isotope composition in whole blood of control subjects is different from that of hemochromatosis patients and is sensitive to the amount of total iron removed by the phlebotomy treatment. The use of stable isotopes to unravel the pathological mechanisms of iron overload diseases is promising but hampered by the lack of data in organs involved in the iron metabolism. Here, we use Hfe−/− mice, a model of hereditary hemochromatosis, to study the impact of the knock-out on iron isotope compositions of erythrocytes, spleen and liver. Iron concentration increases in liver and red blood cells of Hfe−/− mice compared to controls. The iron stable isotope composition also increases in liver and erythrocytes, consistent with a preferential accumulation of iron heavy isotopes in Hfe−/− mice. In contrast, no difference in the iron concentration nor isotope composition is observed in spleen of Hfe−/− and control mice. Our results in mice suggest that the observed increase of whole blood isotope composition in hemochromatosis human patients does not originate from, but is aggravated by, bloodletting. The subsequent rapid increase of whole blood iron isotope composition of treated hemochromatosis patients is rather due to the release of hepatic heavy isotope-enriched iron than augmented iron dietary absorption. Further research is required to uncover the iron light isotope component that needs to balance the accumulation of hepatic iron heavy isotope, and to better understand the iron isotope fractionation associated to metabolism dysregulation during hereditary hemochromatosis.


2021 ◽  
Vol 572 ◽  
pp. 117133
Author(s):  
Yanhong Chen ◽  
Yaoling Niu ◽  
Qiqi Xue ◽  
Yajie Gao ◽  
Paterno Castillo

2021 ◽  
Vol 569 ◽  
pp. 117059
Author(s):  
Carlos Pinilla ◽  
Aldemar de Moya ◽  
Segolene Rabin ◽  
Guillaume Morard ◽  
Mathieu Roskosz ◽  
...  

2021 ◽  
Vol 575 ◽  
pp. 120201
Author(s):  
Ann G. Dunlea ◽  
Logan A. Tegler ◽  
Bernhard Peucker-Ehrenbrink ◽  
Ariel D. Anbar ◽  
Stephen J. Romaniello ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document