scholarly journals The utility of drones for studying polar bear behaviour in the Canadian Arctic: opportunities and recommendations

Author(s):  
Patrick Mathiew Jagielski ◽  
Andrew F Barnas ◽  
H. Grant Gilchrist ◽  
Evan Richardson ◽  
Oliver Love ◽  
...  

Climate-induced sea-ice loss represents the greatest threat to polar bears (Ursus maritimus), and utilizing drones to characterize behavioural responses to sea-ice loss is valuable to forecasting polar bear persistence. In this manuscript, we review previously published literature and draw on our own experience of using multirotor aerial drones to study polar bear behaviour in the Canadian Arctic. Specifically, we suggest that drones can minimize human-bear conflicts by allowing users to observe bears from a safe vantage point; produce high-quality behavioural data that can be reviewed as many times as needed and shared with multiple stakeholders; and foster knowledge generation through co-production with northern communities. We posit that in some instances drones may be considered as an alternative tool for studying polar bear foraging behaviour, interspecific interactions, human-bear interactions, human safety and conflict mitigation, and den-site location at individual-level, small spatial scales. Finally, we discuss flying techniques to ensure ethical operation around polar bears, regulatory requirements to consider, and recommend that future research focus on understanding polar bears’ behavioural and physiological responses to drones and the efficacy of drones as a deterrent tool for safety purposes.

2016 ◽  
Vol 12 (12) ◽  
pp. 20160556 ◽  
Author(s):  
Eric V. Regehr ◽  
Kristin L. Laidre ◽  
H. Resit Akçakaya ◽  
Steven C. Amstrup ◽  
Todd C. Atwood ◽  
...  

Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979–2014 (median −1.26 days year −1 ). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35–41 years) were 0.71 (range 0.20–0.95), 0.07 (range 0–0.35) and less than 0.01 (range 0–0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.


ARCTIC ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 14 ◽  
Author(s):  
Ian Stirling ◽  
Evan Richardson ◽  
Gregory W. Thiemann ◽  
Andrew E. Derocher

In April and May 2003 through 2006, unusually rough and rafted sea ice extended for several tens of kilometres offshore in the southeastern Beaufort Sea from about Atkinson Point to the Alaska border. Hunting success of polar bears (Ursus maritimus) seeking seals was low despite extensive searching for prey. It is unknown whether seals were less abundant in comparison to other years or less accessible because they maintained breathing holes below rafted ice rather than snowdrifts, or whether some other factor was involved. However, we found 13 sites where polar bears had clawed holes through rafted ice in attempts to capture ringed seals (Phoca hispida) in 2005 through 2006 and another site during an additional research project in 2007. Ice thickness at the 12 sites that we measured averaged 41 cm. These observations, along with cannibalized and starved polar bears found on the sea ice in the same general area in the springs of 2004 through 2006, suggest that during those years, polar bears in the southern Beaufort Sea were nutritionally stressed. Searches made farther north during the same period and using the same methods produced no similar observations near Banks Island or in Amundsen Gulf. A possible underlying ecological explanation is a decadal-scale downturn in seal populations. But a more likely explanation is major changes in the sea-ice and marine environment resulting from record amounts and duration of open water in the Beaufort and Chukchi seas, possibly influenced by climate warming. Because the underlying causes of observed changes in polar bear body condition and foraging behaviour are unknown, further study is warranted.


1975 ◽  
Vol 32 (11) ◽  
pp. 2111-2123 ◽  
Author(s):  
Gerald W. Bowes ◽  
Charles J. Jonkel

Polychlorinated biphenyls (PCB), man-made industrial chemicals, have been identified in tissues of polar bears (Ursus maritimus), ringed (Phoca hispida) and square flipper (Erignathus barbatus) seals, and Arctic char (Salvelinus alpinus) of the Canadian arctic and subarctic. All tissues from each species examined contained these compounds. PCB content in tissue, both absolute and relative to the concentration of DDT (p,p′-DDE + p,p′-DDD + p,p′-DDT), generally increased from seals to adult polar bears to polar bear cubs and young. Polar bear milk contained high concentrations of PCB and is the most probable source of the high concentrations in polar bear cubs. Chromatograms revealed a greater accumulation of higher chlorinated PCB isomers in polar bears than in seals, their main food. Residue data suggest that polar bear subpopulations in the eastern Canadian arctic and subarctic have been exposed to higher levels of PCB and DDT than western subpopulations.


ARCTIC ◽  
2017 ◽  
Vol 70 (2) ◽  
pp. 121 ◽  
Author(s):  
Amy C. Johnson ◽  
Jodie D. Pongracz ◽  
Andrew E. Derocher

Polar bears (Ursus maritimus) display fidelity to large geographic regions, and their movements are influenced by sea ice distribution. Polar bear subpopulations are moderately distinct from one another, and long-distance movements between subpopulations are rare. We describe and analyze the movements of a female polar bear tracked by satellite telemetry from spring 2009 for 798 days. This female traveled an exceptionally long distance (totaling 11 686 km) from the sea ice off the Yukon Territory, Canada (Southern Beaufort Sea subpopulation) to Wrangel Island, Russia (Chukchi Sea subpopulation). In comparison to other polar bears in this study, this bear traveled farther, moved faster, and had a much larger home range in the first year. Furthermore, the calculation of the home range size by two different methods demonstrated that the commonly used minimum convex polygon method overestimated the home range compared to the less biased Brownian bridge movement model. This female’s long-distance movement was unusual and provides additional evidence for gene flow between subpopulations. Monitoring polar bear movements is useful to track such events, which is especially important at present because sea ice loss due to climate change can affect subpopulation boundaries and influence management.


2017 ◽  
Author(s):  
Susan J Crockford

The polar bear (Ursus maritimus) was the first species to be classified as threatened with extinction based on predictions of future conditions rather than current status. These predictions were made using expert-opinion forecasts of population declines linked to modeled habitat loss – first by the International Union for the Conservation of Nature (IUCN)’s Red List in 2006, and then by the United States Fish and Wildlife Service (USFWS) in 2008 under the Endangered Species Act (ESA), based on data collected to 2005 and 2006, respectively. Both assessments predicted significant population declines of polar bears would result by mid-century as a consequence of summer sea ice extent rapidly reaching 3-5 mkm2 on a regular basis: the IUCN predicted a >30% decline in total population, while the USFWS predicted the global population would decline by 67% (including total extirpation of ten subpopulations within two vulnerable ecoregions). Biologists involved in these conservation assessments had to make several critical assumptions about how polar bears might be affected by future habitat loss, since sea ice conditions predicted to occur by 2050 had not occurred prior to 2006. However, summer sea ice declines have been much faster than expected: low ice levels not expected until mid-century (about 3-5 mkm2) have occurred regularly since 2007. Realization of predicted sea ice levels allows the ‘rapid sea ice decline = population decline’ assumption for polar bears to be treated as a testable hypothesis. Data collected between 2007 and 2015 reveal that polar bear numbers have not declined as predicted and no subpopulation has been extirpated. Several subpopulations expected to be at high risk of decline remained stable and five showed increases in population size. Another at-risk subpopulation was not counted but showed marked improvement in reproductive parameters and body condition with less summer ice. As a consequence, the hypothesis that repeated summer sea ice levels of below 5 mkm2 will cause significant population declines in polar bears is rejected, a result that indicates the ESA and IUCN judgments to list polar bears as threatened based on future risks of habitat loss were scientifically unfounded and that similar predictions for Arctic seals and walrus may be likewise flawed. The lack of a demonstrable ‘rapid sea ice decline = population decline’ relationship for polar bears also potentially invalidates updated survival model outputs that predict catastrophic population declines should the Arctic become ice-free in summer.


2017 ◽  
Author(s):  
Susan J Crockford

The polar bear (Ursus maritimus) was the first species to be classified as threatened with extinction based on predictions of future conditions rather than current status. These predictions were made using expert-opinion forecasts of population declines linked to modeled habitat loss – first by the International Union for the Conservation of Nature (IUCN)’s Red List in 2006, and then by the United States Fish and Wildlife Service (USFWS) in 2008 under the Endangered Species Act (ESA), based on data collected to 2005 and 2006, respectively. Both assessments predicted significant population declines of polar bears would result by mid-century as a consequence of summer sea ice extent rapidly reaching 3-5 mkm2 on a regular basis: the IUCN predicted a >30% decline in total population, while the USFWS predicted the global population would decline by 67% (including total extirpation of ten subpopulations within two vulnerable ecoregions). Biologists involved in these conservation assessments had to make several critical assumptions about how polar bears might be affected by future habitat loss, since sea ice conditions predicted to occur by 2050 had not occurred prior to 2006. However, summer sea ice declines have been much faster than expected: low ice levels not expected until mid-century (about 3-5 mkm2) have occurred regularly since 2007. Realization of predicted sea ice levels allows the ‘rapid sea ice decline = population decline’ assumption for polar bears to be treated as a testable hypothesis. Data collected between 2007 and 2015 reveal that polar bear numbers have not declined as predicted and no subpopulation has been extirpated. Several subpopulations expected to be at high risk of decline remained stable and five showed increases in population size. Another at-risk subpopulation was not counted but showed marked improvement in reproductive parameters and body condition with less summer ice. As a consequence, the hypothesis that repeated summer sea ice levels of below 5 mkm2 will cause significant population declines in polar bears is rejected, a result that indicates the ESA and IUCN judgments to list polar bears as threatened based on future risks of habitat loss were scientifically unfounded and that similar predictions for Arctic seals and walrus may be likewise flawed. The lack of a demonstrable ‘rapid sea ice decline = population decline’ relationship for polar bears also potentially invalidates updated survival model outputs that predict catastrophic population declines should the Arctic become ice-free in summer.


Author(s):  
Charles W. Martin ◽  
Ashley M. McDonald ◽  
Guillaume Rieucau ◽  
Brian J. Roberts

AbstractOil spills threaten the structure and function of ecological communities. In the northern Gulf of Mexico, the 2010 Deepwater Horizon spill was among the largest marine disasters in history. While many predicted catastrophic consequences for nearshore fishes, field studies indicate surprising resilience in populations and communities. One potential mechanism for this resilience is the recognition and behavioral avoidance at small spatial scales of the toxic chemical constituents found in oil. Previous research indicates many marsh fishes have the capacity to avoid oil contaminated areas. Here, we test whether prior oil exposure of a common marsh fish, the Gulf killifish Fundulus grandis, alters this avoidance response. Using choice tests between unoiled and a range of oiled sediments, we found that, even at low levels of previous exposure, killifish lose recognition of oiled sediments. Preference for unoiled sediments was lost across the entire range of oil concentrations tested here after oil exposure, and some evidence for preference of oiled sediments was even demonstrated. These results provide evidence for lack of response to toxic environments in exposed individuals, suggesting sublethal impairment of sensory mechanisms on an individual level despite organism survival. Future research should highlight additional sublethal consequences that affect ecosystem and food web functioning.


2007 ◽  
Vol 85 (5) ◽  
pp. 596-608 ◽  
Author(s):  
T.W. Bentzen ◽  
E.H. Follmann ◽  
S.C. Amstrup ◽  
G.S. York ◽  
M.J. Wooller ◽  
...  

Ringed seals ( Phoca hispida Schreber, 1775 = Pusa hispida (Schreber, 1775)) and bearded seals ( Erignathus barbatus (Erxleben, 1777)) represent the majority of the polar bear ( Ursus maritimus Phipps, 1774) annual diet. However, remains of lower trophic level bowhead whales ( Balaena mysticetus L., 1758) are available in the southern Beaufort Sea and their dietary contribution to polar bears has been unknown. We used stable isotope (13C/12C, δ13C, 15N/14N, and δ15N) analysis to determine the diet composition of polar bears sampled along Alaska’s Beaufort Sea coast in March and April 2003 and 2004. The mean δ15N values of polar bear blood cells were 19.5‰ (SD = 0.7‰) in 2003 and 19.9‰ (SD = 0.7‰) in 2004. Mixing models indicated bowhead whales composed 11%–26% (95% CI) of the diets of sampled polar bears in 2003, and 0%–14% (95% CI) in 2004. This suggests significant variability in the proportion of lower trophic level prey in polar bear diets among individuals and between years. Polar bears depend on sea ice for hunting seals, and the temporal and spatial availabilities of sea ice are projected to decline. Consumption of low trophic level foods documented here suggests bears may increasingly scavenge such foods in the future.


ARCTIC ◽  
2019 ◽  
Vol 72 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Thomas G. Smith ◽  
Ian Stirling

Harp seals (Pagophilus groenlandicus) that breed in February and March in the White Sea migrate to open water around Svalbard and Franz Josef Land in the Barents Sea, feeding pelagically while following the receding ice edge northward to the edge of the polar pack. Although harp seals are present throughout the area during the summer, they are primarily pelagic and do not appear to be extensively preyed upon by polar bears (Ursus maritimus). However, occasionally, large numbers of harp seals may haul out and rest on the pack ice or feed in the water below the ice and surface to breathe between the floes. When approached by a polar bear while on the ice, harp seals do not exhibit the instant flight response characteristic of the polar bear’s primary prey species, ringed (Pusa hispida) and bearded seals (Erignathus barbatus). In this situation, polar bears may make multiple kills without either consuming their own prey or scavenging seals killed by other bears. This behavior appears not to frighten other nearby harp seals, whether hauled out on the ice or in the water below the floes. These unusual concentrations of harp seals hauled out on sea ice may be related to the distribution and abundance of fish or other epontic prey. Their lack of an escape response to predators on the surface of the sea ice is probably a result of briefly hauling out in large numbers in spring while whelping on the sea ice in areas where the consequences of potential polar bear predation are insignificant. The rare events of harp seal mortality from bears killing them on the surface of pack ice during the summer do not appear to have a significant impact at the population level of either species.


2016 ◽  
Vol 283 (1836) ◽  
pp. 20160380 ◽  
Author(s):  
Ryan R. Wilson ◽  
Eric V. Regehr ◽  
Karyn D. Rode ◽  
Michelle St Martin

Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears ( Ursus maritimus ) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.


Sign in / Sign up

Export Citation Format

Share Document