A multistage magmatic history for the genesis of the Orford ophiolite (Quebec, Canada): a study of the Mont Chagnon massif

2002 ◽  
Vol 39 (8) ◽  
pp. 1201-1217 ◽  
Author(s):  
François Huot ◽  
Réjean Hébert ◽  
Bruno Turcotte

This paper concerns the petrogenesis of the 504 ± 3 Ma Mont Chagnon massif, the southern extension of the Orford ophiolite in the Quebec Appalachians. The evolution of this massif is summarized in three stages marked by different magmatic series. In the Late Cambrian, the onset of southeastern subduction of the Iapetus basin generated an immature oceanic island arc made up of light rare-earth-element-depleted tholeiites, now preserved in the massif as a portion of the intrusive crustal unit, the dyke complex, and part of the lower volcanic unit. A phase of arc splitting, and concomitant partial erosion of the crustal section, was shortly followed by the eruption of rhyolite genetically related to felsic and low-Ti dykes, and trondhjemite. The geochemistry of these magmas bear some similarities with boninitic series. We believe these liquids derived from the partial melting of the Iapetus amphibolitized oceanic crust, with that of its Laurentian-derived sediments and nearby peridotite, either found as a trapped sliver above the subducting slab or as the slab itself. The final stage, preserved in the massif as a part of the intrusive section, the upper volcanic rocks, and the late-stage dykes, represents the back-arc opening. An ocean-island component is involved in the back-arc related petrogenetic processes, producing magmas with compositions intermediate between arc tholeiites and enriched back-arc basin basalts. This is the first report that the Iapetus basin was locally closing as early as Late Cambrian in the southern Quebec area.

2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.


2002 ◽  
Vol 39 (12) ◽  
pp. 1729-1744 ◽  
Author(s):  
Stephen J Piercey ◽  
James K Mortensen ◽  
Donald C Murphy ◽  
Suzanne Paradis ◽  
Robert A Creaser

This paper provides an integrated field and geochemical study of weakly alkalic, ~360 Ma mafic rocks from the Yukon–Tanana terrane in the Finlayson Lake region, southeastern Yukon. These mafic rocks occur as dykes and sills that crosscut older felsic metavolcanic rocks and metasedimentary rocks (Kudz Ze Kayah unit) or as flows interlayered with carbonaceous metasedimentary rocks. The mafic rocks have signatures similar to those of ocean-island basalts, moderate TiO2 and P2O5 contents, elevated high field strength element and light rare earth element contents, and εNd350 = +1.1. A subset of the dykes (group 4b) has similar geochemical characteristics but with higher Th/Nb and lower Nb/U ratios, higher Zr and light rare earth element contents, and εNd350 = –2.8. The geochemical and isotopic attributes of these rocks are consistent with formation from either lithospheric or asthenospheric sources during decompression melting of the mantle, with some rocks exhibiting evidence for crustal contamination (group 4b). The alkalic basalts are interpreted to represent ~360 Ma ensialic back-arc rifting and basin generation. It is envisioned that east-dipping subduction, represented by slightly older magmatic suites (Fire Lake unit), was disrupted by subduction hinge roll-back, westward migration of arc magmatism, and the onset of back-arc extension. Decompression melting of the mantle associated with back-arc generation resulted in mantle melting and the formation of the alkalic basalts. The spatial association of this mafic magmatism with crustally derived felsic volcanic rocks and contained volcanogenic massive sulphide mineralization suggests that the associated deposits (Kudz Ze Kayah, GP4F) formed within an ensialic back-arc environment.


2015 ◽  
Vol 3 (40) ◽  
pp. 10566-10573 ◽  
Author(s):  
Yufei Hu ◽  
Sabah K. Bux ◽  
Jason H. Grebenkemper ◽  
Susan M. Kauzlarich

ThezTof Yb14MnSb11is improved by the introduction of a light rare earth element, RE3+(RE = Pr, Sm) with partially filled f-levels. The carrier concentration is reduced upon substituting RE3+for Yb2+, adding one electron to the system and improving thezTvalues 30–40% over that of the pristine material.


1998 ◽  
Vol 35 (8) ◽  
pp. 951-963 ◽  
Author(s):  
J Dostal ◽  
D A Robichaud ◽  
B N Church ◽  
P H Reynolds

Eocene volcanic rocks of the Buck Creek basin in central British Columbia are part of the Challis-Kamloops volcanic belt extending from the United States across British Columbia to central Yukon. The volcanic rocks include two units, the Buck Creek Formation, composed of high-K calc-alkaline rocks with predominant andesitic composition, and the overlying Swans Lake unit made up of intraplate tholeiitic basalts. Whole rock 40Ar/39Ar data for both units show that they were emplaced at 50 Ma. They have similar mantle-normalized trace element patterns characterized by a large-ion lithophile element enrichment and Nb-Ta depletion, similar chondrite-normalized rare earth element patterns with (La/Yb)n ~4-14 and heavy rare earth element fractionation, and overlapping epsilonNd values (2.4-3.1) and initial Sr-isotope ratios ( ~ 0.704). These features suggest derivation of these two units from a similar mantle source, probably garnet-bearing subcontinental lithosphere. The differences between tholeiitic and calc-alkaline suites can be due, in part, to differences in the depth of fractional crystallization and the crystallizing mineral assemblage. Fractional crystallization of the calc-alkaline magmas began at a greater (mid-crustal) depth and included fractionation of Fe-Ti oxides. The volcanic rocks are probably related to subduction of the Farallon plate under the North American continent in a regime characterized by transcurrent movements and strike-slip faulting.


Sign in / Sign up

Export Citation Format

Share Document