Le terrane de Slide Mountain (Cordillères canadiennes) : une lithosphère océanique marquée par des points chauds

2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.

2002 ◽  
Vol 39 (8) ◽  
pp. 1201-1217 ◽  
Author(s):  
François Huot ◽  
Réjean Hébert ◽  
Bruno Turcotte

This paper concerns the petrogenesis of the 504 ± 3 Ma Mont Chagnon massif, the southern extension of the Orford ophiolite in the Quebec Appalachians. The evolution of this massif is summarized in three stages marked by different magmatic series. In the Late Cambrian, the onset of southeastern subduction of the Iapetus basin generated an immature oceanic island arc made up of light rare-earth-element-depleted tholeiites, now preserved in the massif as a portion of the intrusive crustal unit, the dyke complex, and part of the lower volcanic unit. A phase of arc splitting, and concomitant partial erosion of the crustal section, was shortly followed by the eruption of rhyolite genetically related to felsic and low-Ti dykes, and trondhjemite. The geochemistry of these magmas bear some similarities with boninitic series. We believe these liquids derived from the partial melting of the Iapetus amphibolitized oceanic crust, with that of its Laurentian-derived sediments and nearby peridotite, either found as a trapped sliver above the subducting slab or as the slab itself. The final stage, preserved in the massif as a part of the intrusive section, the upper volcanic rocks, and the late-stage dykes, represents the back-arc opening. An ocean-island component is involved in the back-arc related petrogenetic processes, producing magmas with compositions intermediate between arc tholeiites and enriched back-arc basin basalts. This is the first report that the Iapetus basin was locally closing as early as Late Cambrian in the southern Quebec area.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Shuang-Shuang Chen ◽  
Tong Hou ◽  
Jia-Qi Liu ◽  
Zhao-Chong Zhang

Shikoku Basin is unique as being located within a trench-ridge-trench triple junction. Here, we report mineral compositions, major, trace-element, and Sr-Nd-Pb isotopic compositions of bulk-rocks from Sites C0012 (>18.9 Ma) and 1173 (13–15 Ma) of the Shikoku Basin. Samples from Sites C0012 and 1173 are tholeiitic in composition and display relative depletion in light rare earth elements (REEs) and enrichment in heavy REEs, generally similar to normal mid-ocean ridge basalts (N-MORB). Specifically, Site C0012 samples display more pronounced positive anomalies in Rb, Ba, K, Pb and Sr, and negative anomalies in Th, U, Nb, and Ta, as well as negative Nb relative to La and Th. Site 1173 basalts have relatively uniform Sr-Nd-Pb isotopic compositions, close to the end member of depleted mantle, while Site C0012 samples show slightly enriched Sr-Nd-Pb isotopic signature, indicating a possible involvement of enriched mantle 1 (EM1) and EM2 sources, which could be attributed to the metasomatism of the fluids released from the dehydrated subduction slab, but with the little involvement of subducted slab-derived sedimentary component. Additionally, the Shikoku Basin record the formation of the back-arc basin was a mantle conversion process from an island arc to a typical MORB. The formation of the Shikoku Basin is different from that of the adjacent Japan Sea and Parece Vela Basin, mainly in terms of the metasomatized subduction-related components, the nature of mantle source, and partial melting processes.


2001 ◽  
Vol 38 (9) ◽  
pp. 1313-1334 ◽  
Author(s):  
W RA Baragar ◽  
U Mader ◽  
G M LeCheminant

A 500 m-thick lens of carbonatitic ultrabasic lapilli tuffs and lavas interbedded with platformal Povungnituk sediments in the foreland of the Cape Smith Belt is its earliest known magmatism and may relate to its initial rifting. The sequence comprises tuffs capped in part by effusives. Accretionary and cored lapilli in the tuffs and pillows in the lavas suggest emplacement in a shallow marine environment. Its current assemblage of antigorite, chlorite, talc, and (in part primary?) carbonate, magnetite, ilmenite, minor chromite, and phlogopite results from probable concurrent hydrothermal alteration and subsequent greenschist regional metamorphism. Surviving accessory minerals: apatite, monazite, zircon, rutile, and aeschenite(?) are widespread but scarce. Carbonate (mostly dolomite) is a major and integral component of the rock and interpreted as an original, albeit recrystallized, magmatic constituent. Magnetite is conspicuous in the tuffs: as lapilli and lapilli cores, locally as giant crystals, and as stringers. Except in subhedral groundmass crystals, its negligible TiO2 is evidence of its hydrothermal reconstitution. Compositions of chromite cores and rare relicts of phlogopite crystals are consistent with mantle derivation. Rock compositions are low in SiO2 (<35%) and Al2O3 (<3%), high in MgO (>25 wt.%) and alkaline. The immobile incompatible elements (e.g., Zr, average 260 ppm; Nb, average 130 ppm) and the light rare-earth elements are enriched. The rocks are compositionally similar to type Siberian meimechites and closely resemble the "meimechite"–carbonatite eruptives of Castignon Lake, Labrador Trough. Based on experimental evidence, Lac Leclair magmas are interpreted as originating by minor partial melting of carbonated mantle at ~100 km depths and reaching the surface via conduits opened by deep rifting that initiated the Cape Smith segment of the Trans-Hudson Orogen.


1986 ◽  
Vol 23 (2) ◽  
pp. 202-213 ◽  
Author(s):  
I. O. Oshin ◽  
J. H. Crocket

The Cambro-Ordovician age Thetford Mines Complex from the Quebec Appalachians, Canada, preserves a remarkably complete section of ophiolites at Lac de l'Est, where mafic volcanics overlie a plutonic mafic–ultramafic plate. The basaltic volcanics consist of a lower unit, representing the extrusive component of the ophiolite assemblage, and an upper unit, whose petrogenetic and tectonic relationships with the ophiolitic volcanics are problematic.The lower unit ophiolitic volcanics include high- and low-TiO2 basalts. The upper unit volcanics, of which the basal 80 m was sampled, are low-TiO2 basalts. Fractional crystallization was important in the evolution of high-TiO2 lower unit magmas but played only a minor role in the formation of other magmas. Partial melting processes were dominant, or much more important than fractional crystallization, in controlling the composition of other magmas. The parental magmas of the high-TiO2 lower unit basalts were partial melts of undepleted mantle, whereas the low-TiO2 volcanics were partial melts of residual, depleted mantle. Despite different mantle sources, the high- and low-TiO2 basalts of the lower unit are interbedded in the field.The close spatial association of chemically diverse magma types is best accounted for by generation in a back-arc or marginal basin environment. This interpretation is supported by the geochemistry of argillaceous sediments in the Lac de l'Est pile and the absence of a sheeted dike facies in the Thetford Mines ophiolites.


2003 ◽  
Vol 40 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Stephen J Piercey ◽  
James K Mortensen ◽  
Robert A Creaser

Devonian–Mississippian felsic rocks from the Finlayson Lake region have variable geochemical and Nd isotopic characteristics that provide insights into the tectonic and metallogenic evolution of the Yukon–Tanana terrane (YTT), and the northern Cordillera. Late Devonian (~365–360 Ma) calc-alkaline and tholeiitic arc felsic rocks in the mafic-dominated Fire Lake unit yield εNd350 = –4.8 and +0.1, respectively, and have 1.49–1.94 Ga depleted mantle model ages (TDM). Devonian–Mississippian (~360–356 Ma) felsic volcanic (Kudz Ze Kayah unit, Wolverine succession) and intrusive rocks (Grass Lakes suite) associated with volcanogenic massive sulphide (VMS) deposits have εNd350 = –7.8 to –9.5 with TDM = 1.59–2.25 Ga. A granitoid sample from the Early Mississippian (~350–345 Ma) Simpson Range plutonic suite has εNd350 = –12.9 and TDM = 2.01 Ga, similar to previously reported values for this suite. The VMS-associated Grass Lakes suite of granitoids has higher high field strength element (HFSE) and rare-earth element (REE) contents, and higher Zr/Sc, Zr/TiO2, Nb/La, and Zr/La values relative to the Simpson Range plutonic suite; these geochemical features are similar to coeval VMS-associated felsic volcanic rocks in the Kudz Ze Kayah unit. The identification of similar HFSE–REE-enriched felsic volcanic and subvolcanic intrusive rocks may aid in delineating prospective regions for VMS mineralization in the YTT and other continental-margin arc to back-arc environments. The geochemical and Nd isotopic data for these YTT felsic rocks suggest that they reflect episodic mid-Paleozoic arc (Fire Lake unit; Simpson Range plutonic suite) and back-arc magmatism (Kudz Ze Kudz unit; Wolverine succession) built upon a transitional basement with variable, but significant, influence from evolved (Proterozoic) crustal materials.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-25
Author(s):  
Wen-Bin Jia ◽  
Guang-Sheng Yan ◽  
Xiao-Fei Yu ◽  
Yong-Sheng Li ◽  
Sandro Conticelli ◽  
...  

Detailed geochronological, geochemical, and Sr-Nd-Hf isotopic data are presented for early Paleozoic volcanic rocks in the Karadaban area from the northern Altyn region, NW China, with the aim to constrain their petrogenesis and tectonic implications. The Karadaban volcanic rocks show a bimodal distribution in composition, with rhyolite and basalt. The LA-ICP-MS zircon U-Pb age indicates that the volcanic rocks were erupted at 512 Ma. The mafic rocks are calc-alkaline, enriched in light rare earth elements (LREE) and large-ion lithophile elements (LILE; Ba and U) and depleted in high-field strength elements (HFSE; Nb and Ta). These features together with their depleted isotopic signature (initial87Sr/86Sr=0.70413–0.70817,εNdt=2.7to 3.7) suggest that they were likely derived from a depleted mantle source but mixed with crustal components while upwelling. The felsic rocks show an A-type affinity, with high alkalis and Rb/Sr and Ga/Al ratios; enriched in LILE (e.g., Rb, K, Th, U, and REE) and depleted in Ba, Sr, Nb, P, and Ti; and with fractionated REE patterns with strong negative Eu anomalies. The combination of the decoupling ofεNdtvalues (−2.5 to −6.3) andεHftvalues (+5.5 to +14.7) in the setting of subduction indicates that the felsic rocks were generated by partial melting of the juvenile crustal as a result of magma upwelling. The geochemical and Sr-Nd-Hf isotopic characteristics, coupled with regional geology, indicate that the formation of the Karadaban bimodal volcanic rocks involves an extensional regime associated with a subduction-related environment. The rifting of the back arc in response to the retreat of the subducting northern Altyn oceanic lithosphere may account for the Karadaban bimodal volcanic rocks.


1997 ◽  
Vol 34 (9) ◽  
pp. 1272-1285 ◽  
Author(s):  
T. E. Smith ◽  
P. E. Holm ◽  
N. M. Dennison ◽  
M. J. Harris

Three intimately interbedded suites of volcanic rocks are identified geochemically in the Burnt Lake area of the Belmont Domain in the Central Metasedimentary Belt, and their petrogenesis is evaluated. The Burnt Lake back-arc tholeiitic suite comprises basalts similar in trace element signature to tholeiitic basalts emplaced in back-arc basins formed in continental crust. The Burnt Lake continental tholeiitic suite comprises basalts and andésites similar in trace element composition to continental tholeiitic sequences. The Burnt Lake felsic pyroclastic suite comprises rhyolitic pyroclastics having major and trace element compositions that suggest that they were derived from crustal melts. Rare earth element models suggest that the Burnt Lake back-arc tholeiitic rocks were formed by fractional crystallization of mafic magmas derived by approximately 5% partial melting of an amphibole-bearing depleted mantle, enriched in light rare earth elements by a subduction component. The modelling also suggests that the Burnt Lake continental tholeiitic rocks were formed by contamination – fractional crystallization of mixtures of mafic magmas, derived by ~3% partial melting of the subduction-modified source, and rhyolitic crustal melts. These models are consistent with the suggestion that the Belmont Domain of the Central Metasedimentary Belt formed as a back-arc basin by attenuation of preexisting continental crust above a westerly dipping subduction zone.


1998 ◽  
Vol 135 (3) ◽  
pp. 331-348 ◽  
Author(s):  
GEORGIA PE-PIPER

The widespread Triassic volcanic rocks of Greece, dismembered during the Hellenide orogeny, are used to interpret the nature of Triassic rifting. Four assemblages of volcanic rocks are distinguished on geochemical criteria: (1) a predominant subalkaline basalt–andesite–dacite series with a high proportion of pyroclastic rocks; (2) minor shoshonites; (3) alkali basalt and (4) MORB. The stratigraphic and palaeogeographic distribution of these rock types is synthesized. New Pb and Nd isotopic data are used to discriminate between hypotheses suggesting that either subduction or extension was responsible for the Triassic volcanism. In the subalkaline basalt assemblage, εNd is negative with depleted mantle model ages >1.5 Ga. Pb isotopic compositions are mostly close to the very distinctive compositional field of Cenozoic extensional rocks of the Aegean area, with very high 207Pb/204Pb for relatively low 206Pb/204Pb ratios. These isotopic data confirm interpretations based on trace elements that subalkaline basalts were predominantly derived from melt-depleted peridotite in the sub-continental lithospheric mantle as a result of extension. Small areas of enriched hydrous mantle partially melted to yield shoshonitic magmas. Nd and Pb isotopic compositions of the alkali basalts are quite different from those in other rock types and suggest a HIMU mantle source component derived from a small plume, which also influenced MORB compositions. Distribution of these various rock types is used to constrain palaeogeographic reconstruction of Triassic micro-continental blocks.


Sign in / Sign up

Export Citation Format

Share Document