Cosmogenic exposure dating in arctic glacial landscapes: implications for the glacial history of northeastern Baffin Island, Arctic Canada

2005 ◽  
Vol 42 (1) ◽  
pp. 67-84 ◽  
Author(s):  
Jason P Briner ◽  
Gifford H Miller ◽  
P Thompson Davis ◽  
Robert C Finkel

Cosmogenic exposure dating and detailed glacial-terrain mapping from the Clyde Foreland, Baffin Island, Arctic Canada, reveal new information about the extent and dynamics of the northeastern sector of the Laurentide Ice Sheet (LIS) during the last glacial maximum (LGM). The Clyde Foreland is composed of two distinct landscape zones: (1) glacially scoured terrain proximal to the major sources of Laurentide ice that flowed onto the foreland, and (2) ice distal unscoured sectors of the foreland. Both zones are draped with erratics and dissected by meltwater channels, indicating past ice cover. We interpret the two landscape classes in terms of ice sheet erosive ability linked with basal thermal regime: glacially scoured terrain was occupied by erosive warm-based ice, and unscoured terrain was last occupied by non-erosive cold-based ice. Cosmogenic exposure ages from >100 erratics from the two landscape types have different age distributions. Cosmogenic exposure ages from the glacially scoured areas suggest ice cover during the LGM, followed by deglaciation between ~15 and ~12 ka. In the unscoured lowlands, the cosmogenic exposure ages have multiple modes ranging between ~12 and ~50 ka, suggesting multiple periods of cold-based ice cover during the last glacial cycle. In landscapes covered by cold-based ice, large numbers of cosmogenic exposure ages are required for elucidating glacial histories.

2020 ◽  
Author(s):  
Pierre-Olivier Couette ◽  
Patrick Lajeunesse ◽  
Boris Dorschel ◽  
Catalina Gebhardt ◽  
Dierk Hebbeln ◽  
...  

<p>The maximal extent and subsequent deglaciation of the Laurentide Ice Sheet (LIS) across eastern Baffin Island during the last glacial cycle (MIS-2) has been widely debated during the last decades as different palaeo-glaciological models have been proposed. Spatial and temporal variability of ice sheets extension during Quaternary glaciations complicate the establishment of a reliable reconstruction of the ice dynamics in the area. Furthermore, the lack of geophysical data in most of the fjords, and seaward, makes it difficult to reconcile the proposed terrestrial and marine glacial margins. High-resolution swath-bathymetric data, collected between 2003 and 2017, display a diversity of glacial bedforms in the Clyde Inlet fjord-cross-shelf-trough system (Eastern Baffin Island, Arctic Canada). These bedforms reveal a potential position of the LIS margin during the Last Glacial Maximum (LGM) near the shelf break. Early deglaciation of the Clyde Trough was marked by an initial break up of the ice sheet. This rapid retreat of the ice margin was punctuated by episodic stabilizations forming GZWs. This retreat was followed by a readvance and subsequent slow retreat of the LIS, as indicated by the presence of recessional moraines. Long-term stabilizations within the trough possibly coincided with major climatic cooling episodes, such as the end of Heinrich event 1 (H1) and the Younger Dryas. However, these stabilizations appear to have been influenced by topography, as GZWs can be found at pinning points in the trough. Deglaciation of the fjord occurred during the early Holocene and was faster, probably due to increased water depths. The presence of multiple moraine systems however indicate that deglaciation of Clyde Inlet was marked by stages of ice margin stabilization.</p>


The Holocene ◽  
2018 ◽  
Vol 28 (9) ◽  
pp. 1535-1544 ◽  
Author(s):  
Laurence M Dyke ◽  
Anna LC Hughes ◽  
Camilla S Andresen ◽  
Tavi Murray ◽  
John F Hiemstra ◽  
...  

Large marine-terminating glaciers around the margins of the Greenland Ice Sheet have retreated, accelerated and thinned over the last two decades. Relatively little is known about the longer term behaviour of the Greenland Ice Sheet, yet this information is valuable for assessing the significance of modern changes. We address this by reporting 11 new beryllium-10 (10Be) exposure ages from previously uninvestigated coastal areas across southeast Greenland. The new ages are combined with existing data from the region to assess the timing of glacier retreat after the Last Glacial Maximum. The results show that deglaciation occurred first in the north of the region (~68°N) and progressed southwards. This north–south progression is attributed to the influence of the warm Irminger Current on the ice margin. Areas in the south of the region were isolated from the warm waters by the shallow bathymetry of the continental shelf. This demonstrates that oceanographic forcing paced the deglaciation of southeast Greenland through the Younger Dryas and early Holocene. In most areas of southeast Greenland bedrock ages are systematically older than their counterpart boulder samples; this offset is likely the result of inherited 10Be content in bedrock surfaces. This suggests that subglacial erosion during the last glacial cycle was insufficient to completely remove pre-existing 10Be content. Alternatively, this pattern may be the signature of a substantial retreat and advance cycle prior to final Holocene deglaciation.


2012 ◽  
Vol 24 (4) ◽  
pp. 377-394 ◽  
Author(s):  
Dominic A. Hodgson ◽  
Michael J. Bentley ◽  
Christoph Schnabel ◽  
Andreas Cziferszky ◽  
Peter Fretwell ◽  
...  

AbstractWe studied the glacial geomorphology and geochronology of two ice-free valleys in the Dufek Massif (Antarctic Specially Protected Area 119) providing new constraints on past ice sheet thickness in the Weddell Sea embayment. 10Be and 26Al cosmogenic surface exposure dating provided chronological control. Seven glacial stages are proposed. These include an alpine glaciation, with subsequent (mid-Miocene?) over-riding by a warm-based ice sheet. Subsequent advances are marked by a series of minor drift deposits at 760 m altitude at > 1 Ma, followed by at least two later ice sheet advances that are characterized by extensive drift sheet deposition. An advance of plateau ice field outlet glaciers from the south postdated these drift sheets. The most recent advance involved the cold-based expansion of the ice sheet from the north at the Last Glacial Maximum, or earlier, which deposited a series of bouldery moraines during its retreat. This suggests at most a relatively modest expansion of the ice sheet and outlet glaciers dominated by a lateral ice expansion of just 2–3 km and maintaining a thickness similar to that of the northern ice sheet front. These observations are consistent with other reports of modest ice sheet thickening around the Weddell Sea embayment during the Last Glacial Maximum.


2006 ◽  
Vol 65 (1) ◽  
pp. 136-146 ◽  
Author(s):  
Derek Fabel ◽  
David Fink ◽  
Ola Fredin ◽  
Jon Harbor ◽  
Magnus Land ◽  
...  

AbstractLateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600–26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.


2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


2012 ◽  
Vol 6 (6) ◽  
pp. 4897-4938 ◽  
Author(s):  
S. Charbit ◽  
C. Dumas ◽  
M. Kageyama ◽  
D. M. Roche ◽  
C. Ritz

Abstract. Since the original formulation of the positive-degree-day (PDD) method, different PDD calibrations have been proposed in the literature in response to the increasing number of observations. Although these formulations provide a satisfactory description of the present-day Greenland geometry, they have not all been tested for paleo ice sheets. Using the climate-ice sheet model CLIMBER-GRISLI coupled with different PDD models, we evaluate how the parameterization of the ablation may affect the evolution of Northern Hemisphere ice sheets in the transient simulations of the last glacial cycle. Results from fully coupled simulations are compared to time-slice experiments carried out at different key periods of the last glacial period. We find large differences in the simulated ice sheets according to the chosen PDD model. These differences occur as soon as the onset of glaciation, therefore affecting the subsequent evolution of the ice system. To further investigate how the PDD method controls this evolution, special attention is given to the role of each PDD parameter. We show that glacial inception is critically dependent on the representation of the impact of the temperature variability from the daily to the inter-annual time scale, whose effect is modulated by the refreezing scheme. Finally, an additional set of sensitivity experiments has been carried out to assess the relative importance of melt processes with respect to initial ice sheet configuration in the construction and the evolution of past Northern Hemisphere ice sheets. Our analysis reveals that the impacts of the initial ice sheet condition may range from quite negligible to explaining about half of the LGM ice volume depending on the representation of stochastic temperature variations which remain the main driver of the evolution of the ice system.


Sign in / Sign up

Export Citation Format

Share Document