The Salinic Orogeny in northern New Brunswick: geochronological constraints and implications for Silurian stratigraphic nomenclature1This article is one of a series of papers published in this CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology.

2012 ◽  
Vol 49 (1) ◽  
pp. 222-238 ◽  
Author(s):  
Reginald A. Wilson ◽  
Sandra L. Kamo

The Salinic Orogeny is defined to encompass tectonic interactions that affect all elements of Ganderia involved in the closure of the Tetagouche–Exploits back-arc basin between the Late Ordovician and Early Devonian. Hence, the D1 and D2 deformations in the Miramichi Highlands and Elmtree Inlier of northern New Brunswick are Salinic events, and onlap of Lower Silurian rocks onto exhumed parts of the Brunswick Subduction Complex represents the earliest (Salinic A) of three Silurian unconformities in the region. Upper Ordovician to Lower Silurian rocks of the Matapédia successor basin contain widespread evidence of Middle Silurian tectonism (e.g., disconformities, angular unconformities, and fold interference patterns) created by Devonian overprinting of Silurian folds lacking axial planar cleavage (Salinic B). Recent U–Pb radioisotopic dating of chemically abraded zircon from rhyolite just above the Salinic B unconformity has yielded an age of 422.3 ± 0.3 Ma; combined with late Early Silurian fossil ages just below the unconformity, this indicates a ca. 5 million year Middle Silurian hiatus. Finally, Upper Silurian (Ludfordian) rocks are locally disconformably overlain by polymictic conglomerates that form the base of the Devonian section (Salinic C). All Silurian rocks in northeastern New Brunswick have historically been included in the Chaleurs Group; however, unconformities and local stratigraphic variations (especially compared with the type locality) support the introduction of new higher rank names in New Brunswick. Hence, the Quinn Point Group is introduced to incorporate Lower Silurian rocks, the Petit Rocher Group to include Upper Silurian sedimentary rocks in the Nigadoo River Syncline, and the Dickie Cove Group for Upper Silurian volcanic rocks in the Charlo – Jacquet River area. Upper Silurian rocks west of Campbellton that are contiguous with the Chaleurs Group in Quebec, will remain part of the Chaleurs Group.


2008 ◽  
Vol 45 (9) ◽  
pp. 981-998 ◽  
Author(s):  
R. A. Wilson ◽  
C. R. van Staal ◽  
S. Kamo

Early Silurian volcanic and subvolcanic rocks are preserved in the lower part of the Chaleurs Group at two locations in northern New Brunswick. At Quinn Point, mafic to intermediate rocks are hosted by sedimentary rocks of the Weir Formation, and at Pointe Rochette, a bed of felsic tuff occurs near the base of the Weir. These rocks are interpreted as the first evidence in New Brunswick of magmatism associated with Late Ordovician – Early Silurian subduction of Tetagouche–Exploits back-arc oceanic crust. At Quinn Point, mafic rocks include a thick basaltic flow or sill and intermediate to mafic cobbles in overlying conglomerate beds. The in situ mafic rocks and the conglomerate clasts are chemically alike and display subduction-related affinities on tectonic discrimination diagrams. At Pointe Rochette, fine-grained felsic tuff contains elevated Th and U and depleted high-field-strength elements, consistent with a subduction-influenced setting, although rare-earth element (REE) abundances are low and the REE profile is relatively flat. A U–Pb (zircon) age of 429.2 ± 0.5 Ma was obtained from the tuff, consistent with the late Llandovery to early Wenlock age of the overlying La Vieille Formation and coinciding with the latter stages of development of the Brunswick subduction complex. Volcanic rocks were emplaced in the arc to arc-trench gap region, probably reflecting local step-back of the magmatic axis due to accretion of continental back-arc ribbons. The low volume of Early Silurian subduction-influenced rocks is probably related to the relatively narrow width of the back-arc basin and the young, “warm” character of back-arc crust.



2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.



2008 ◽  
Vol 45 (1) ◽  
pp. 15-29 ◽  
Author(s):  
Alan D’hulst ◽  
Georges Beaudoin ◽  
Michel Malo ◽  
Marc Constantin ◽  
Pierre Pilote

The Lower Devonian Sainte-Marguerite volcanic rocks are part of a Silurian–Devonian volcanic sequence deposited between the Taconian and Acadian orogenies in the Gaspé Peninsula, Quebec, Canada. The Sainte-Marguerite unit includes basaltic and dacitic lava flows with calc-alkaline and volcanic-arc affinities. Such affinities are also recorded by the trace-element signature in Lower Silurian and most Lower Devonian volcanic units of the Gaspé Peninsula. However, most of the other Silurian–Devonian volcanic rocks occurring in the Gaspé Peninsula have been previously interpreted to have erupted in an intracontinental setting. A back-arc setting for the Gaspé Peninsula between the Taconian and Acadian orogenies could account for these subduction volcanic-arc signatures, though a metasomatized lithospheric mantle magma source, unrelated to subduction, cannot be excluded. Lower Silurian and Lower Devonian volcanic rocks in the central part of the Gaspé Peninsula show an arc affinity, whereas Upper Silurian and Lower to Middle Devonian volcanic rocks, located in the south and north of the Gaspé Peninsula, respectively, show a within-plate affinity. The Lower Devonian Archibald Settlement and Boutet volcanic rocks of the southern and northern Gaspé Peninsula, respectively, show a trend toward a within-plate affinity. This suggests that within-plate volcanism migrated from south to north through time in an evolving back-arc environment and that the subduction signature of Lower Silurian and Lower Devonian rocks results from a source that melted only under the central part of the Gaspé Peninsula.



1992 ◽  
Vol 29 (7) ◽  
pp. 1430-1447 ◽  
Author(s):  
J. A. Winchester ◽  
C. R. van Staal ◽  
J. P. Langton

An investigation of the geology and chemistry of the basic igneous rocks in the Elmtree and Belledune inliers in northern New Brunswick shows that the bulk of the Middle Ordovician rocks of the ophiolitic Fournier Group are best interpreted as the products of volcanism and sedimentation in an extensive ensimatic back-arc basin southeast of a volcanic arc. The oceanic back-arc-basin igneous rocks form the basement to renewed arc-related basaltic volcanism in late Middle to Late Ordovician time. The Fournier Group is separated from the structurally-underlying, shale-dominated Elmtree Formation of the Tetagouche Group by an extensive tectonic melange, which incorporates lenses of serpentinite, mafic volcanic rocks, and sedimentary rocks of both the Tetagouche and Fournier groups. The mafic volcanic rocks in the Elmtree Formation correlate best with those intercalated with the lithologically similar sediments of the Llandeilian–Caradocian Boucher Brook Formation in the northern Miramichi Highlands. The melange and the present structural amalgamation of the Tetagouche and Fournier groups result from closure of the marginal basin by northward-directed subduction at the end of the Ordovician. Most mafic suites in the Elmtree and Belledune inliers can be chemically correlated with similar suites in the northern Miramichi Highlands, showing that the two areas are not separated by a terrane boundary.



2012 ◽  
Vol 49 (1) ◽  
pp. 166-188 ◽  
Author(s):  
Susan C. Johnson ◽  
Leslie R. Fyffe ◽  
Malcolm J. McLeod ◽  
Gregory R. Dunning

The Penobscot arc system of the northeastern Appalachians is an Early Cambrian to early Tremadocian (ca. 514–485 Ma) ensialic to ensimatic arc–back-arc complex that developed along the margin of the peri-Gondwanan microcontinent Ganderia. Remnants of this Paleozoic arc system are best preserved in the Exploits Subzone of central Newfoundland. Correlative rocks in southern New Brunswick are thought to occur in the ca. 514 Ma Mosquito Lake Road Formation of the Ellsworth Group and ca. 497–493 Ma Annidale Group; however in the past, the work that has been conducted on the latter has been of a preliminary nature. New data bearing on the age and tectonic setting of the Annidale Group provides more conclusive evidence for this correlation. The Annidale Group contains subalkaline, tholeiitic to transitional, basalts to basaltic andesites, picritic tuffs and calc-alkaline to tholeiitic felsic dome complexes that have geochemical signatures consistent with suprasubduction zone magmatism that was likely generated in a back-arc basin. New U–Pb ages establish that the Late Cambrian to Early Tremadocian Annidale Group and adjacent ca. 541 Ma volcanic rocks of the Belleisle Bay Group in the New River belt were affected by a period of younger magmatism ranging in age from ca. 479–467 Ma. This provides important constraints on the timing of tectonism in the area. A ca. 479 Ma age for the Stewarton Gabbro that stitches the faulted contact between the Annidale and Belleisle Bay groups, demonstrates that structural interleaving and juxtaposition occurred during early Tremadocian time, which closely coincides with the timing of obduction of Penobscottian back-arc ophiolites onto the Ganderian margin in Newfoundland.



1987 ◽  
Vol 24 (4) ◽  
pp. 752-759 ◽  
Author(s):  
J. B. Murphy

Upper Ordovician to Lower Silurian rocks in the Antigonish Highlands consist of interlayered basalts, rhyodacites, arkoses, and conglomerates overlain by a thick sequence of marine clastic rocks and minor rhyolites. The stratigraphy documents a marine transgression. The volcanic rocks were deposited in a within-plate, continental, extensional environment. The basalts display alkalic and tholeiitic affinities, and the rhyodacites were formed by anatexis of the crust. The origin of the younger rhyolites is not clear: they are compositionally distinct from the rhyodacites but may be related to them as late-stage differentiates. At present, it is not possible to evaluate whether the tectonic setting and magmatic affinities are regionally or locally controlled.The geological history is very similar to that of Lower Silurian rocks immediately north of the Antigonish Highlands at Arisaig. In the simplest sense, this indicates these areas may have been juxtaposed prior to the Late Ordovician and limits cumulative post-Silurian movement on the boundary (Hollow) fault to about 40 km.



Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-22
Author(s):  
Pierre Jutras ◽  
J. Brendan Murphy ◽  
Dennis Quick ◽  
Jaroslav Dostal

Abstract Middle to Upper Ordovician volcanic rocks in the Arisaig area of Nova Scotia, Canada, constitute the only known record of volcanism in West Avalonia during that interval. Hence, they have been extensively studied to test paleocontinental reconstructions that consistently show Avalonia as a drifting microcontinent during that period. Identification of volcanic rocks with an intermediate composition (the new Seaspray Cove Formation) between upper Darriwilian bimodal volcanic rocks of the Dunn Point Formation and Sandbian felsic pyroclastic rocks of the McGillivray Brook Formation has led to a reevaluation of magmatic relationships in the Ordovician volcanic suite at Arisaig. Although part of the same volcanic construction, the three formations are separated by significant time-gaps and are shown to belong to three distinct magmatic subsystems. The tectonostratigraphic context and trace element contents of the Dunn Point Formation basalts suggest that they were produced by the high-degree partial melting of an E-MORB type source in a back-arc extensional setting, whereas trace element contents in intermediate rocks of the Seaspray Cove Formation suggest that they were produced by the low-degree partial melting of a subduction-enriched source in an arc setting. The two formations are separated by a long interval of volcanic quiescence and deep weathering, during which time the back-arc region evolved from extension to shortening and was eventually onlapped by arc volcanic rocks. Based on limited field constraints, paleomagnetic and paleontological data, this progradation of arc onto back-arc volcanic rocks occurred from the north, where an increasingly young Iapetan oceanic plate was being subducted at an increasingly shallow angle. Partial subduction of the Iapetan oceanic ridge is thought to have subsequently generated slab window magmatism, thus marking the last pulse of subduction-related volcanism in both East and West Avalonia.



2016 ◽  
Vol 52 ◽  
pp. 223
Author(s):  
Stephen K. Donovan ◽  
Randall F Miller

The New Brunswick Museum’s collection of Silurian crinoids from eastern Canada is small, and includes specimens from New Brunswick, Quebec and Nova Scotia. Material considered herein is, with one exception, from New Brunswick. Included are: the cladid Syndetocrinus dartae (Upper Silurian of Quebec); the camerates Scyphocrinites sp. (Pridoli or Lochkovian) and camerate crinoid arms gen. et sp. indet. (Lower Silurian); columnal morphotaxa Floricrinus (col.) sp. (Ludlow or Pridoli) and Lanxocolumnus (col.) sp. cf. L. chaleurensis Donovan and Keighley (probably Llandovery, Telychian); distal dendritic radicular attachments (Ludlow or Pridoli); and disarticulated brachials (Ludlow or Pridoli). ἀe fossil record of crinoids from the Silurian of New Brunswick appears depauperate, but this most likely reḀects the poor preservation of the specimens (commonly disarticulated and moldic) and the lack of interest shown by collectors. ἀe only remedy for this problem would be either discovery of a crinoid Lagerstätte, which would be attractive to collectors, or a focused campaign of collecting of disarticulated material from multiple outcrops.



2004 ◽  
Vol 41 (5) ◽  
pp. 527-551 ◽  
Author(s):  
Reginald A Wilson ◽  
Elliott T Burden ◽  
Rudolf Bertrand ◽  
Esther Asselin ◽  
Alexander D McCracken

The Gaspé Belt in the Restigouche area comprises three successions separated by a Late Silurian (Salinic) disconformity and an Early Devonian angular unconformity. The lower, Upper Ordovician to Lower Silurian sequence consists of siliciclastic turbidites of the Boland Brook and Whites Brook formations (Grog Brook Group), overlain by calcareous turbidites of the Pabos and White Head formations (Matapédia Group), and slope and shelf deposits of the Upsalquitch and Limestone Point formations (lower Chaleurs Group). Above the Salinic disconformity, the upper Chaleurs Group and the Dalhousie Group record a transgressive–regressive cycle. The former comprises Pridolian carbonate rocks of the West Point Formation and overlying Pridolian to Lochkovian sedimentary rocks of the Indian Point Formation. The Chaleurs Group is conformably overlain by Lochkovian to early Emsian subaerial volcanic rocks of the Dalhousie Group (Val d'Amour Formation), which is unconformably overlain by alluvial–lacustrine deposits of the late Emsian Campbellton Formation. Acadian orogenesis began during the Emsian and is characterized by open to closed folding, heterogenous cleavage development, and reverse and strike-slip faults. The Salinic orogeny is manifested in extensional block faulting, within-plate volcanism, and uplift and deep erosion of Early Silurian strata. Early Devonian high-level intrusion of the Matapédia Group, White Head clasts in Indian Point conglomerate, and thermal maturation data all indicate an extended period of Late Silurian – Early Devonian uplift in parts of the Restigouche area. Thermal maturities of West Point and Indian Point strata are within the oil and condensate windows and suggest potential for hydrocarbons in the study area.



Sign in / Sign up

Export Citation Format

Share Document