radioisotopic dating
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Vol 128 (1) ◽  
Author(s):  
VLADIMIR SILANTIEV ◽  
LORENZO MARCHETTI ◽  
AUSONIO RONCHI ◽  
PAOLO SCHIROLLI ◽  
FRANK SCHOLZE ◽  
...  

Non-marine bivalves are key fossils in Permian continental stratigraphy and palaeogeography. Although known since the end of 19th century, the occurrences from the continental basins of the Southern Alps have never been extensively studied. The non-marine bivalves from the Lower Permian Collio Formation (Brescian pre-Alps) are herein revised, and those from the Guncina Formation (Athesian District) are described for the first time. These two units yielded non-marine bivalves belonging to the genus Palaeomutela sensu lato, which is widespread in the Permian continental successions of eastern Euramerica. Three Palaeomutela morphotypes have been herein described: oval-subtriangular, subtrapezoidal and elongated. The latter includes several specimens herein assigned to Palaeomutela (Palaeanodonta) berrutii sp. nov. and dominates the Collio Formation association. The Guncina Formation yielded also the genus Redikorella, for the first time co-occurring on the same stratigraphic horizon of Palaeomutela, herein assigned to Palaeomutela (Palaeanodonta) guncinaensis sp. nov. To-date, it was generally accepted that the first members of the genera Palaeomutela and Redikorella occurred during the Ufimian (late Kungurian of the global scale) in the non-marine basins of the Cis-Ural Foredeep and of Angara, respectively. Such new finds in the early-middle Kungurian of southwestern Europe, well constrained by radioisotopic dating, suggest new global first appearance (First Appearance Datum) and a possible new center of origin of these genera. This fact raises new questions on biostratigraphy, palaeobiogeography and palaeoecology, which will require further research. If we assume that the genera Palaeomutela and Redikorella had only one center of origin, we need to hypothesise possible migration routes from SW Europe to the continental basins of Eastern Europe and Angara. Apparently, such migration could be better supported by a Pangaea B palaeogeographic configuration.



2021 ◽  
pp. 412-426
Author(s):  
Christopher O. Oriakhi

Radioactivity and Nuclear Reactions gives an overview of nuclear chemistry with emphasis on radioactive decay, binding energy and nuclear stability. Modes of radioactive decay are discussed, along with writing and balancing nuclear equations. Decay modes covered include alpha emission, beta emission, gamma emission, positron emission, and electron capture, along with a summary of how each type of decay process affects the parent radioisotope and determines the daughter isotope formed. Nuclear transmutation induced by changes in the nuclei is discussed. The chapter covers the kinetics of radioactive decay including the relationship between the half-lives of radioisotopes and radioisotopic dating. The chapter concludes with a quantitative coverage of the energy of nuclear reactions including the interconversion of mass and energy via the mass defect.



PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254481
Author(s):  
Katherine Griffiths ◽  
Neal Michelutti ◽  
Marianne S. V. Douglas ◽  
John P. Smol

Gajewski offers a formal comment on Griffiths et al. (2017), a paper that explored how microclimates and their varying ice cover regimes on lakes and ponds in Arctic regions modified the diatom assemblage responses to recent warming. One of Gajewski’s main criticisms is that the microclimate classification scheme used in Griffiths et al. (2017) is merely anecdotal; a claim which ignores the value of observational evidence and misunderstands the frequency that each site was visited or surveyed. We clarify that the study sites were visited multiple times via recurrent aerial surveys and ground observations dating back to the 1970s, which supports our microclimate classification scheme. Many of Gajewski’s claims regarding climate, catchment characteristics, and ice melting properties from field locations he has not visited were refuted by veteran Arctic scientists with long-term field experience in these regions. In addition, Gajewski makes several criticisms concerning radioisotopic dating, core chronology, sediment mixing, diagenesis, and preservation of bioindicators that relate more to general paleolimnological assumptions than to conclusions reached by Griffiths et al. (2017). Research from the 1980s and 1990s, when scientific consensus on these issues was first reached, readily show that the methodologies and data interpretation of Griffiths et al. (2017) are sound. We appreciate the opportunity to expound on the finer details of the Griffiths et al. (2017) paper, work based on field research by the study’s co-authors spanning almost three decades, with additional observations from colleagues dating back to the 1970s. We address Gajewski’s criticisms with relevant literature, expert statements, and a few clarifying comments.



Author(s):  
Robert C. Speed ◽  
Hai Cheng

ABSTRACT This chapter presents geological documentation of Quaternary (and perhaps older) event histories of southeastern Barbados. The Barbados Limestone is herein formally defined. A time-stratigraphic division of the Barbados Limestone in southeastern Barbados and the properties of the stratigraphic units are presented. A major finding of this study is that the marine terraces originated wholly by marine erosion, not by reef construction, and evolved in stages over a long duration. The hydrology and thickness data of the Barbados Limestone are discussed, and hypotheses on causes of thickness variations are given. The study domain is divided into seven areas that contain a continuous flight of nine marine terraces preserved in various partial sequences. Discussions of these key seven areas in southeastern Barbados are supported by geologic maps at large scale and cross sections. Sections with VE > 1 display limestone stratigraphy and facies over relatively large lengths. Sections with VE = 1 show true structural configurations over short lengths. Detailed observations and radioisotopic dating of the limestone units permit differentiation and correlation among them.



Geology ◽  
2021 ◽  
Author(s):  
Yang Zhang ◽  
James G. Ogg ◽  
Daniel Minguez ◽  
Mark W. Hounslow ◽  
Snorre Olaussen ◽  
...  

The age of the beginning of magnetic polarity Chron M0r, a proposed marker for the base of the Aptian Stage, is disputed due to a divergence of published radioisotopic dates and ambiguities in stratigraphic correlation of sections. Our magnetostratigraphy of core DH1 from Svalbard, Norway, calibrates a bentonite bed, dated by U-Pb methods to 123.1 ± 0.3 Ma, to the uppermost part of magnetozone M1r, which is ~1.9 m.y. before the beginning of Chron M0r. This is the first direct calibration of any high-precision radioisotopic date to a polarity chron of the M sequence. The interpolated age of 121.2 ± 0.4 Ma for the beginning of Chron M0r is younger by ~5 m.y. than its estimated age used in the Geologic Time Scale 2012, which had been extrapolated from radioisotopic dates on oceanic basalts and from Aptian cyclostratigraphy. The adjusted age model implies a commensurate faster average global oceanic spreading rate of ~12% during the Aptian–Santonian interval. Future radioisotopic dating and high-resolution cyclostratigraphy are needed to investigate where to expand the mid-Jurassic to earliest Cretaceous interval by the required ~4 m.y.



2021 ◽  
Author(s):  
Sergei Lazarev ◽  
Klaudia Kuiper ◽  
Oriol Oms ◽  
Maia Bukhsianidze ◽  
Davit Vasilyan ◽  
...  

<p>The late Pliocene Akchagylian transgression in the Caspian Basin led to a five-fold increase of the Caspian Sea surface water, extending the basin to the vast areas of Central Asia, Caucasian foreland (Kura Basin) and the Russian Plate. It also changed the regional climatic conditions by making the Pliocene glaciation milder. Later, establishment of hydrological connection between the Caspian Sea and the global ocean known as the “Akchagylian flooding” enabled active fauna migrations transforming the paleoecology of the region. Despite a relatively well constrained palaeoenvironmental history, the Akchagylian still lacks a univocal age model and two major age constraints exist - the “long” (3.6-1.8 Ma) and the “short” Akchagylian (2.7-2.1 Ma). In this study, we resolve the age contradictions by magnetostratigraphic and <sup>40</sup>Ar/<sup>39</sup>Ar dating of several sections in the Kura Basin. With our new data, we further revise magnetostratigraphy and <sup>40</sup>Ar/<sup>39</sup>Ar constraints in 25 sections across the Kura Basin and Turkmenistan. We propose a new unified age model for the Akchagylian Stage: 1. Akchagylian transgression at 2.95±0.02 Ma; 2. Caspian-Arctic connection (2.75–2.45 Ma); 3. “Desalinated” Akchagylian between 2.45-2.13 Ma; 4. Akchagylian-Apsheronian boundary at 2.13 Ma correlated to the Reunion subchron (C2r.1n). Our data shows, that magnetostratigraphy requires a careful assessment of sedimentation rates and support from other proxies such as sedimentology, biostratigraphy and radioisotopic dating. The new ages constrain a much shorter (2.95–2.1 Ma) Akchagylian than in previously mentioned regional geological time scales (3.6–1.8 Ma) and strongly appeal to reconsider the ages of numerous archaeological and mammalian sites in the south Caspian region.</p>





2020 ◽  
Vol 132 (9-10) ◽  
pp. 1969-1986 ◽  
Author(s):  
Yuting Zhong ◽  
Roland Mundil ◽  
Jun Chen ◽  
Dongxun Yuan ◽  
Steven W. Denyszyn ◽  
...  

Abstract The initiation and peak magmatic periods of the Emeishan Large Igneous Province (LIP) are well constrained by both biostratigraphic and radioisotopic dating methods; however, the age of cessation of volcanism is poorly constrained and continues to be debated. Marine carbonates interbedded with volcanic ashes across the Guadalupian–Lopingian boundary (GLB) are widespread in south China, and these ashes provide an opportunity to study its timing, origin, and potential relationship with the Emeishan LIP. Here we present biostratigraphic constraints, mineralogical and geochemical characteristics, and high-resolution geochronology of ash layers from the Maoershan and Chaotian sections. Stratigraphic correlation, especially conodont biostratigraphy, confines these ashes to the early Wuchiapingian. Those altered ashes are geochemically akin to alkali tonsteins from the coal seams of the lower Xuanwei/Lungtan Formation in southwest China. The ashes postdating the GLB yield a coherent cluster of zircon U-Pb ages with weighted mean 206Pb/238U ages of 258.82 ± 0.61 Ma to 257.39 ± 0.68 Ma, in agreement with the ages of intrusive rocks (259.6 ± 0.5 Ma to 257.6 ± 0.5 Ma) in the central Emeishan LIP. Moreover, the ɛHf(t) values of zircons from the ashes vary from +2.5 to +10.6, a range consistent with that of the Emeishan LIP. The results collectively suggest that the early Wuchiapingian volcanic ashes are a product of extrusive alkaline magmatism and most likely mark the waning stage of the Emeishan volcanism, which may have continued until ca. 257.4 Ma in the early Wuchiapingian.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neal Michelutti ◽  
Preston Sowell ◽  
Pedro M. Tapia ◽  
Christopher Grooms ◽  
Martin Polo ◽  
...  

AbstractPre-Hispanic artifacts and sacred architecture were recently discovered submerged in a large lake (Laguna Sibinacocha) in the Peruvian Andes. The underwater ruins indicate a dramatic shift in the region’s hydrology but the timing and triggers of this shift remain unknown. In a novel approach blending archaeology and paleoecology, we analyzed a sediment sequence from within one of the recovered artifacts, specifically a pot from the Late Intermediate Period (~1000–1400 CE). Radioisotopic dating of discrete sediment intervals sampled from the pot show a stratigraphically intact profile that preserves a history of change at this site. The pot’s basal sediment age places the timing of lake-level rise during the late ~1600s CE, which post-dates the end of the Inca Empire (1400–1532 CE) by approximately 150 years. The ubiquity of planktonic algae throughout the sediment profile suggests water levels remained high above the pot since its submergence. Paleoclimate data from the nearby Quelccaya ice core records indicate lake flooding followed a pronounced wet period beginning ~1520 CE. These data show the permanence of mean state changes in climate on the region’s hydrology, with clear implications for the study site (an important water resource for ~500,000 people) and other lakes in the rapidly warming Andes.



Sign in / Sign up

Export Citation Format

Share Document