Influence of White Spruce Trees on Permafrost-Table Microtopography, Mackenzie River Delta

1975 ◽  
Vol 12 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Don Gill

The topography of the permafrost table in the Mackenzie River Delta is remarkably uniform. However, differences in active layer thickness are characteristically found around the stems of white spruce trees where conical depressions occur in the permafrost table. The locally increased active layer thickness appears to result from the interaction of the following factors, all of which cause greater heat diffusivity into the soil near tree stems: (1) some 25% of the gross rainfall is intercepted by individual spruce crowns, which causes a corresponding decrease in soil moisture below the tree; (2) accelerated sediment deposition around spruce stems during the spring flood creates small alluvial deposits that provide a locally better drained site; (3) the growth of insulative mosses around tree stems is also retarded by the increased sediment deposition; and (4) the low-albedo slopes of alluvial deposits surrounding tree stems intercept more solar radiation than the normal flat surfaces away from trees.

2016 ◽  
Author(s):  
Sebastian Westermann ◽  
Maria Peter ◽  
Moritz Langer ◽  
Georg Schwamborn ◽  
Lutz Schirrmeister ◽  
...  

Abstract. Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approx. 16 000 km2 in the Lena River Delta in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products (MODIS Land Surface Temperature, MODIS Snow Extent, GlobSnow Snow Water Equivalent) and fields of meteorological variables from the ERA-interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River Delta. A comparison of the model forcing to in-situ measurements on Samoylov Island in the southern part of the study area yields a satisfactory agreement both for surface temperature, snow depth and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in in the Lena River Delta which suggests that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1 to 1.5 °C. The warmest ground temperatures are calculated for grid cells close to the main river channels in the south, as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the coldest temperatures are modeled for the eastern part, an area with low surface temperatures and snow depths. The lowest thaw depths are modeled for Yedoma permafrost featuring very high ground ice and soil organic contents in the southern parts of the delta. The comparison to in-situ observations indicates that the satellite-based model scheme is generally capable of estimating the thermal state of permafrost and its time evolution in the Lena River Delta. The approach could hence be a first step towards remote detection of ground thermal conditions and active layer thickness in permafrost areas.


2017 ◽  
Vol 11 (3) ◽  
pp. 1441-1463 ◽  
Author(s):  
Sebastian Westermann ◽  
Maria Peter ◽  
Moritz Langer ◽  
Georg Schwamborn ◽  
Lutz Schirrmeister ◽  
...  

Abstract. Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1–2 °C. Comparison of monthly average temperatures at depths of 2–3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of −0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an area with low surface temperatures and snow depths. The lowest thaw depths are modeled for Yedoma permafrost featuring very high ground ice and soil organic contents in the southern parts of the delta. The comparison to in situ observations indicates that transient ground temperature modeling forced by remote-sensing data is generally capable of estimating the thermal state of permafrost (TSP) and its time evolution in the Lena River delta. The approach could hence be a first step towards remote detection of ground thermal conditions and active layer thickness in permafrost areas.


2013 ◽  
Vol 5 (2) ◽  
pp. 305-310 ◽  
Author(s):  
C. Beer ◽  
A. N. Fedorov ◽  
Y. Torgovkin

Abstract. Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. The gridded datasets can be accessed at the PANGAEA repository (doi:10.1594/PANGAEA.808240). Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.


Author(s):  
Chao Wang ◽  
Zhengjia Zhang ◽  
Hong Zhang ◽  
Bo Zhang ◽  
Yixian Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document