scholarly journals Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia

2017 ◽  
Vol 11 (3) ◽  
pp. 1441-1463 ◽  
Author(s):  
Sebastian Westermann ◽  
Maria Peter ◽  
Moritz Langer ◽  
Georg Schwamborn ◽  
Lutz Schirrmeister ◽  
...  

Abstract. Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1–2 °C. Comparison of monthly average temperatures at depths of 2–3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of −0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an area with low surface temperatures and snow depths. The lowest thaw depths are modeled for Yedoma permafrost featuring very high ground ice and soil organic contents in the southern parts of the delta. The comparison to in situ observations indicates that transient ground temperature modeling forced by remote-sensing data is generally capable of estimating the thermal state of permafrost (TSP) and its time evolution in the Lena River delta. The approach could hence be a first step towards remote detection of ground thermal conditions and active layer thickness in permafrost areas.

2016 ◽  
Author(s):  
Sebastian Westermann ◽  
Maria Peter ◽  
Moritz Langer ◽  
Georg Schwamborn ◽  
Lutz Schirrmeister ◽  
...  

Abstract. Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approx. 16 000 km2 in the Lena River Delta in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products (MODIS Land Surface Temperature, MODIS Snow Extent, GlobSnow Snow Water Equivalent) and fields of meteorological variables from the ERA-interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River Delta. A comparison of the model forcing to in-situ measurements on Samoylov Island in the southern part of the study area yields a satisfactory agreement both for surface temperature, snow depth and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in in the Lena River Delta which suggests that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1 to 1.5 °C. The warmest ground temperatures are calculated for grid cells close to the main river channels in the south, as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the coldest temperatures are modeled for the eastern part, an area with low surface temperatures and snow depths. The lowest thaw depths are modeled for Yedoma permafrost featuring very high ground ice and soil organic contents in the southern parts of the delta. The comparison to in-situ observations indicates that the satellite-based model scheme is generally capable of estimating the thermal state of permafrost and its time evolution in the Lena River Delta. The approach could hence be a first step towards remote detection of ground thermal conditions and active layer thickness in permafrost areas.


2018 ◽  
Vol 10 (9) ◽  
pp. 1360 ◽  
Author(s):  
Tazio Strozzi ◽  
Sofia Antonova ◽  
Frank Günther ◽  
Eva Mätzler ◽  
Gonçalo Vieira ◽  
...  

Low-land permafrost areas are subject to intense freeze-thaw cycles and characterized by remarkable surface displacement. We used Sentinel-1 SAR interferometry (InSAR) in order to analyse the summer surface displacement over four spots in the Arctic and Antarctica since 2015. Choosing floodplain or outcrop areas as the reference for the InSAR relative deformation measurements, we found maximum subsidence of about 3 to 10 cm during the thawing season with generally high spatial variability. Sentinel-1 time-series of interferograms with 6–12 day time intervals highlight that subsidence is often occurring rather quickly within roughly one month in early summer. Intercomparison of summer subsidence from Sentinel-1 in 2017 with TerraSAR-X in 2013 over part of the Lena River Delta (Russia) shows a high spatial agreement between both SAR systems. A comparison with in-situ measurements for the summer of 2014 over the Lena River Delta indicates a pronounced downward movement of several centimetres in both cases but does not reveal a spatial correspondence between InSAR and local in-situ measurements. For the reconstruction of longer time-series of deformation, yearly Sentinel-1 interferograms from the end of the summer were considered. However, in order to infer an effective subsidence of the surface through melting of excess ice layers over multi-annual scales with Sentinel-1, a longer observation time period is necessary.


2012 ◽  
Vol 9 (12) ◽  
pp. 17263-17311 ◽  
Author(s):  
S. Zubrzycki ◽  
L. Kutzbach ◽  
G. Grosse ◽  
A. Desyatkin ◽  
E.-M. Pfeiffer

Abstract. The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km2 and likely holds more than half of the entire soil organic carbon mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean soil organic carbon stocks for the upper 1 m of soils were estimated at 29 kg m−2 ± 10 kg m−2 and at 14 kg m−2 ± 7 kg m−2, respectively. For the depth of 1 m, the total soil organic carbon pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the soil organic carbon pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of soil organic carbon stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The soil organic carbon mass which is stored in the perennially frozen ground below 50 cm soil depth, which is excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg m−2 ± 0.4 kg m−2 for the Holocene river terrace and at 0.9 kg m−2 ± 0.4 kg m−2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.


2013 ◽  
Vol 10 (6) ◽  
pp. 3507-3524 ◽  
Author(s):  
S. Zubrzycki ◽  
L. Kutzbach ◽  
G. Grosse ◽  
A. Desyatkin ◽  
E.-M. Pfeiffer

Abstract. The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg m−2 ± 10 kg m−2 and at 14 kg m−2 ± 7 kg m−2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50–100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg m−2 ± 0.4 kg m−2 for the Holocene river terrace and at 0.9 kg m−2 ± 0.4 kg m−2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.


2017 ◽  
Vol 31 (1) ◽  
pp. 251-266 ◽  
Author(s):  
Xiaoqing Peng ◽  
Tingjun Zhang ◽  
Oliver W. Frauenfeld ◽  
Kang Wang ◽  
Dongliang Luo ◽  
...  

Abstract Variability of active layer thickness (ALT) in permafrost regions is critical for assessments of climate change, water resources, and engineering applications. Detailed knowledge of ALT variations is also important for studies on ecosystem, hydrological, and geomorphological processes in cold regions. The primary objective of this study is therefore to provide a comprehensive 1971–2000 climatology of ALT and its changes across the entire Northern Hemisphere from 1850 through 2100. To accomplish this, in situ observations, the Stefan solution based on a thawing index, and the edaphic factor (E factor) are employed to calculate ALT. The thawing index is derived from (i) the multimodel ensemble mean of 16 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) over 1850–2005, (ii) three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) for 2006–2100, and (iii) Climatic Research Unit (CRU) gridded observations for 1901–2014. The results show significant spatial variability in in situ ALT that generally ranges from 40 to 320 cm, with some extreme values of 900 cm in the Alps. The differences in the ALT climatology between the three RCPs and the historical experiments ranged from 0 to 200 cm. The biggest increases, of 120–200 cm, are on the Qinghai–Tibetan Plateau, while the smallest increases of less than 20 cm are in Alaska. Averaged over all permafrost regions, mean ALT from CMIP5 increased significantly at 0.57 ± 0.04 cm decade−1 during 1850–2005, while 2006–2100 projections show ALT increases of 0.77 ± 0.08 cm decade−1 for RCP2.6, 2.56 ± 0.07 cm decade−1 for RCP4.5, and 6.51 ± 0.07 cm decade−1 for RCP8.5.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 462
Author(s):  
Alyona A. Shestakova ◽  
Alexander N. Fedorov ◽  
Yaroslav I. Torgovkin ◽  
Pavel Y. Konstantinov ◽  
Nikolay F. Vasyliev ◽  
...  

The purpose of this article was to compile four separate digital thematic maps of temperature and ice content of permafrost, the active layer thickness, and cryogenic processes in Yakutia as a basis for assessing changes to modern climate changes and anthropogenic disturbances. In this work, materials on permafrost were used, serving as the basis for compiling a permafrost landscape map of the Republic of Sakha (Yakutia). The maps were compiled using ArcGIS software, which supports attribute table mapping. The ground temperature and active layer thickness maps reflected landscape zonality and regional differences. Peculiarities of genetic types of Quaternary deposits and climatic conditions reflected the ice content of surface sediments and cryogenic process distribution maps. One of the most common is ground temperatures from −2.1 to −4.0 °C, which were found to occupy about 37.4% of the territory of Yakutia. More than half of the region was found to be occupied by permafrost landscapes with a limited thickness of the active layer up to 1.1 m. Ice-rich permafrost (more than 0.4 in ice content) was found to be typical for about 40% of the territory. Thermokarst is the most hazardous process that occurs in half of Yakutia.


2016 ◽  
Vol 11 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Ireneusz Sobota ◽  
Michał Dziembowski ◽  
Tomasz Grajewski ◽  
Piotr Weckwerth ◽  
Marcin Nowak ◽  
...  

Abstract This article describes and discusses the results of observations concerning short-term changes in the thermal conditions and the thickness of the active layer in a test field located in the tundra of the Kaffiøyra (NW Spitsbergen) during the summer season of 2015. One of the objectives was to find a correlation between the dynamic of the changes and the local topography. In recent years, thawing of the active layer in the Kaffiøyra region has been considerably varied in individual summer seasons. The test field area was 100 square meters, comprised 36 measurement points and was situated at approximately 3 m a.s.l. in the tundra. The measurements of the thickness and temperature of the active layer were carried out in July, August and early September of 2015. The greatest thickness of the active layer in the tundra was found near the moraine, in the area with the sharpest slope (156 cm to 212 cm). Ground temperatures were observed to follow the prevailing weather conditions with a delay, which amounted to about 24 h at a depth of 25 cm, and as much as 48 h at a depth of 75 cm. A greater thickness of the active layer was found in the western part of the test field, in the vicinity of a tidal channel, and in the eastern part of the field, bordering on the foot of the Aavatsmarkbreen’s moraine. A considerable sloping of the land, combined with increased surface runoff and infiltration at the time of precipitation, makes the water penetrating into the active layer increase its temperature. This demonstrates that the local land forms (tidal channels and terminal moraines) have a substantial influence on the extent and rate of changes which occur in the active layer.


2007 ◽  
Vol 44 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Ming-ko Woo ◽  
Michael Mollinga ◽  
Sharon L Smith

The variability of maximum active layer thickness in boreal and tundra environments has important implications for hydrological processes, terrestrial and aquatic ecosystems, and the integrity of northern infrastructure. For most planning and management purposes, the long-term probability distribution of active layer thickness is of primary interest. A robust method is presented to calculate maximum active layer thickness, employing the Stefan equation to compute phase change of moisture in soils and using air temperature as the sole climatic forcing variable. Near-surface ground temperatures (boundary condition for the Stefan equation) were estimated based on empirical relationships established for several sites in the Mackenzie valley. Simulations were performed for typically saturated mineral soils, overlain with varying thickness of peat in boreal and tundra environments. The probability distributions of simulated maximum active layer thickness encompass the range of measured thaw depths provided by field data. The effects of climate warming under A2 and B2 scenarios for 2050 and 2100 were investigated. Under the A2 scenario in 2100, the simulated median thaw depth under a thin organic cover may increase by 0.3 m, to reach 1 m depth for a tundra site and 1.6 m depth for a boreal site. The median thaw depth in 2100 is dampened by about 50% under a 1 m thick organic layer. Without an insulating organic cover, thaw penetration can increase to reach 1.7 m at the tundra site. The simulations provide quantitative support that future thaw penetration in permafrost terrain will deepen differentially depending on location and soil.


Sign in / Sign up

Export Citation Format

Share Document