Middle Ordovician Table Head Group of western Newfoundland: a revised stratigraphy

1980 ◽  
Vol 17 (8) ◽  
pp. 1007-1019 ◽  
Author(s):  
Colin F. Klappa ◽  
Paul R. Opalinski ◽  
Noel P. James

Lithostratigraphic nomenclature of early Middle Ordovician strata from western Newfound land is formally revised. The present Table Head Formation is raised to group status and extended to include overlying interbedded terrigenoclastic-rich calcarenites and shales with lime megabreccias. Four new formation names are proposed: Table Point Formation (previously lower Table Head); Table Cove Formation (previously middle Table Head); Black Cove Formation (previously upper Table Head); and Cape Cormorant Formation (previously Caribou Brook formation). The Table Point Formation comprises bioturbated, fossiliferous grey, hackly limestones and minor dolostones; the Table Cove Formation comprises interbedded lime mudstones and grey–black calcareous shales; the Black Cove Formation comprises black graptolitic shales; and the Cape Cormorant Formation comprises interbedded terrigenoclastic and calcareous sandstones, siltstones, and shales, punctuated by massive or thick-bedded lime megabreccias. The newly defined Table Head Group rests conformably or disconformably on dolostones of the Lower Ordovician St. George Group (an upward-migrating diagenetic dolomitization front commonly obscures the contact) and is overlain concordantly by easterly-derived flysch deposits. Upward-varying lithologic characteristics within the Table Head Group result from fragmentation and subsidence of the Cambro-Ordovician carbonate platform and margin during closure of a proto-Atlantic (Iapetus) Ocean.

1997 ◽  
Vol 34 (5) ◽  
pp. 646-654 ◽  
Author(s):  
T. M. Kusky ◽  
J. S. Chow ◽  
S. A. Bowring

The Boil Mountain ophiolite complex of west-central Maine is widely interpreted to mark the Lower Ordovician Penobscottian suture between the Dunnage, Chain Lakes, and Gander terranes. The ophiolite consists of two distinct volcanic groups, including a lower island-arc tholeiite sequence and an upper mid-ocean-ridge basalt sequence. A new Middle Ordovician 477 ± 1 Ma U–Pb age on a tonalite sill that intrudes the lower volcanic–gabbroic sequence is younger than other ca. 500 Ma age constraints for the ophiolite and represents a maximum age for the ophiolite prior to final emplacement over gneissic rocks of the Chain Lakes massif. A comparison of ages and paleogeography of the Boil Mountain ophiolite with ophiolitic sequences in Quebec and Newfoundland indicates that the Taconian and Penobscottian orogenies and ophiolite obduction occurred simultaneously, although on different margins of the Iapetus Ocean. The Taconian ophiolite sequences were obducted onto the Appalachian margin of Laurentia during its collision with the Notre Dame – Bronson Hill belt in the Middle Ordovician, whereas the Boil Mountain ophiolite was obducted onto the Gander margin of Gondwana during its collision with the Exploits subzone – Penobscot arc of the Dunnage terrane in the Lower – Middle Ordovician. We suggest that the lower volcanic–gabbroic sequence of the Boil Mountain ophiolite represents the fore-arc ophiolitic basement to the Penobscot arc. Middle Ordovician rifting of the Penobscottian orogenic collage on the Gander margin formed a new volcanic sequence (Popelogan arc) in front of a growing back-arc basin, and erupted the upper tholeiitic sequence of the Boil Mountain ophiolite in a back-arc-basin setting. The tonalité sill formed during this event by partial melting of the lower volcanic–gabbroic sequence. Spreading in this back-arc basin (Tetagouche basin) brought a fragment of the Gander margin (Chain Lakes massif), along with an allochthonous ophiolitic cover (Boil Mountain complex) across Iapetus, where it collided with the Taconic modified margin of North America in the Late Ordovician and was then intruded by the Ashgillian Attean pluton.


1987 ◽  
Vol 24 (6) ◽  
pp. 1199-1211 ◽  
Author(s):  
Noel P. James ◽  
Jack W. Botsford ◽  
S. Henry Williams

The upper part of an intact sequence of Lower to Middle Ordovician deep-water sediments, which now form a large, disrupted raft within the Rocky Harbour Mélange at Lobster Cove Head, is interpreted as having been deposited downslope from a drowned carbonate platform margin. The entire 50 m thick section is Arenig (late Canadian or Ibexian to early Whiterock) in age; graptolite biostratigraphy demonstrates a correlation with upper parts of the Cow Head Group to the north. The basal part of the section is a proximal facies of the Cow Head Group (Shallow Bay Formation, Factory Cove Member, Beds 9, 10, and part of Bed 11). The upper part of the section consists of interbedded dolostone and shale and is unlike any other sequence in the Cow Head Group. This upper sedimentary sequence is defined as the Lobster Cove Head Member of the Shallow Bay Formation, Cow Head Group. Contact between the two sedimentary packages is also marked by a faunal break and coincides with emplacement of megaconglomerate Bed 12 at Cow Head.This break marks the change from a uniform to complex carbonate platform margin configuration and is here interpreted as the result of synsedimentary faulting. The margin upslope from Cow Head remained in shallow water during the final stages of Cow Head Group deposition, whereas that upslope from Lobster Cove Head was drowned and shed little sediment into deep water. The synsedimentary faulting, which led to rapid subsidence and platform-margin drowning upslope from Lobster Cove Head and possibly the deposition of megaconglomerate Bed 12 at Cow Head, coincides with the onset of the Taconic Orogeny in western Newfoundland.


1990 ◽  
Vol 27 (1) ◽  
pp. 14-26 ◽  
Author(s):  
Sheila R. Stenzel ◽  
Ian Knight ◽  
Noel P. James

Carbonates of the Table Head Group and associated strata were deposited along the western margin of a foreland basin during initial stages of the Taconian Orogeny and record collapse and cannibalization of a long-lived carbonate platform. The stratigraphy of Klappa, Opalinski, and James is here revised to reflect better understanding of lithologic units within this complex tectono-stratigraphic assemblage. The Table Head Group now contains only three formations: the Table Point and Table Cove formations, as originally defined, and the Cape Cormorant Formation, redefined and restricted to western Port au Port Peninsula. Black Cove Formation shales are removed from the Table Head. Distinctive conglomerates once placed in the Cape Cormorant are now recognized as separate units within the overlying flysch and called the Daniel's Harbour Member.The foreland basin developed in three stages: (1) fragmentation, uplift, and erosion of the platform and subsequent deposition of shallow-water limestones (Table Point) on a tectonically unstable shelf; (2) foundering of platform blocks and deposition of deep-water-slope carbonates (Table Cove), basinal black shales (Black Cove), or conglomerates of older shelf carbonates shed from submarine cliffs (Cape Cormorant); and (3) siliciclastic sedimentation interrupted by sediment gravity flows of Table Head clasts shed from submarine escarpments (Daniel's Harbour).


2012 ◽  
Vol 49 (1) ◽  
pp. 59-90 ◽  
Author(s):  
Svend Stouge

Middle Ordovician (late Dapingian–Darriwilian) conodonts from the Shallow Bay and Green Point formations, Cow Head Group, and the Lower Head Formation are recorded from three sections in Gros Morne National Park. The collection was investigated to clarify local age relationships between the uppermost part of the Cow Head Group and the interbedded to overlying sediments of the Lower Head Formation. Conodonts from St. Pauls Inlet North section indicate a middle Dapingian age for the upper lower Bed 13, latest Dapingian to early Darriwilian age for the upper Bed 13, an early Darriwilian (Dw 1) age for the top beds or Bed 15 of the Shallow Bay Formation at Lower Head, and the Lower Head Formation is referred to the Darriwilian. The uppermost part of the lower Bed 13 contains Periodon hankensis n. sp., Gothodus sp. A , and Diaphorodus delicatus followed by Periodon macrodentatus , Ansella longicuspica , Erraticodon n. sp. A , and Spinodus wardi n. sp. in the lowermost part of upper Bed 13. The fauna with P. macrodentatus is referred to the newly established Periodon macrodentatus conodont (phylo-)Zone, which is used for global correlation. The uppermost fauna in the Cow Head Group, i.e., Bed 15, includes Histiodella holodentata , Nealeodus martinpointensis , Oistodella pulchra , Dzikodus peavyi , and Yangtzeplacognathus n. sp. A , which are included in the Histiodella holodentata conodont (Bio-)Subzone of the Periodon macrodentatus Zone. Nealeodus is a new genus introduced here; Periodon hankensis n. sp. and Spinodus wardi n. sp. are new species described from the beds 13 and 15, respectively, in the Cow Head Group; Drepanodus aff. D. giganteus , Drepanodus aff. D. robustus , Erraticodon n. sp. A, Protopanderodus cf. P. cooperi , P. cf. P. varicostatus , and Yangtzeplacognathus n. sp. A are taxa referred to in open nomenclature.


1994 ◽  
Vol 85 (2) ◽  
pp. 131-142 ◽  
Author(s):  
J. D. Johnston ◽  
J. A. Tait ◽  
G. J. H. Oliver ◽  
F. C. Murphy

AbstractThe Lower Palaeozoic tectonic history of central and eastern Europe is poorly understood because of extensive Variscan and/or Alpine reworking. The trace of the Tornquist Sea, the SE arm of the Lower Palaeozoic Iapetus Ocean, extended from NE Britain to Asia Minor. The site of this ocean is constrained by the tectonostratigraphy and faunal provinciality of Lower Palaeozoic inliers in northern Czechoslovakia, and southern Poland. In this paper, the collage of contrasting tectonostratigraphic histories of terranes in the Lower Palaeozoic of Poland is reviewed. Fossil evidence demonstrates that the Holy Cross Mountains and the Krakovian Belt display Lower Ordovician and Lower Devonian angular unconformities. Faunal data suggest that the Tornquist Suture Zone must lie south of the Holy Cross and between Upper Silesia and the Barrandian of the Czech Republic. Between these areas, in the Sudeten Mountains, a continental scale sinistral mylonite zone (along the line of the Intra-Sudetic Fault) was periodically active between the Middle Ordovician and the Upper Triassic. Various dismembered ophiolite, island arc and batholith terranes from alongside the Intra-Sudetic Fault have Ordocivian and Silurian magmatic and metamorphic zircon isotopic and fossil ages. Thus the often stated view that deformation in the Sudetes is Variscan (i.e. post-Middle Devonian) must be called into question. It is proposed instead that the Tornquist Suture is located within the Sudeten mountains, and as in the Holy Cross Mountains, much of the observed deformation is post-Cambrian and pre-Gedinnian in age, i.e. Caledonian.


1994 ◽  
Vol 68 (2) ◽  
pp. 324-338 ◽  
Author(s):  
James Sprinkle ◽  
Gregory P. Wahlman

Four specimens of blastozoan and crinozoan echinoderms are described from the Lower Ordovician El Paso Group in the southern Franklin Mountains just north of El Paso, west Texas.Cuniculocystis flowerin. gen. and sp., based on two partial specimens, appears to be a typical rhombiferan in most of its morphologic features except that it lacks pectinirhombs and instead has covered epispires (otherwise known only from Middle Ordovician eocrinoids) opening on most of the thecal plate sutures. The covered epispires inCuniculocystisindicate that some early rhombiferans had alternate respiratory structures and had not yet standardized on pectinirhombs, a feature previously used as diagnostic for the class Rhombifera.Bockia?elpasoensisn. sp. is a new eocrinoid based on one poorly preserved specimen that has a small ellipsoidal theca and unbranched brachioles attached to a flat-topped spoutlike summit. It is the earliest known questionable representative of this genus and the only one that has been described from North America.Elpasocrinus radiatusn. gen. and sp. is an early cladid inadunate crinoid based on a single well-preserved calyx. It fits into a lineage of early cladids leading to the dendrocrinids and toCarabocrinus.Several additional separate plates, stem segments, and a holdfast of these and other echinoderms are also described.


1986 ◽  
Vol 132 ◽  
pp. 27-37
Author(s):  
J.R Ineson ◽  
J.S Peel ◽  
M.P Smith

The name Sjælland Fjelde Formation is introduced for a varied sequence of shallow-water platform dolomites and dolomitic limestones, about 105 m in thickness, in Kronprins Christian Land, eastern North Greenland. The new formation lies between the previously described Wandel Valley and Børglum River Formations. Conodont faunas indicate that the Sjælland Fjelde Formation is of Middle to earliest Late Whiterockian (early Middle Ordovician) age and that it can be eorrelated with the upper part of the Wandel Valley Formation of Peary Land to the north-west.


1990 ◽  
Vol 27 (6) ◽  
pp. 731-741 ◽  
Author(s):  
Rudolf Bertrand

Carbonate platform sequences of Anticosti Island and the Mingan Archipelago are Early Ordovician to Early Silurian in age. With the exception of the Macasty Formation, the sequences are impoverished in dispersed organic matter, which is chiefly composed of zooclasts. Zooclast reflectances suggest that the Upper Ordovician and Silurian sequences outcropping on Anticosti Island are entirely in the oil window but that the Lower to Middle Ordovician beds of the Mingan Archipelago and their stratigraphic equivalents in the subsurface of most of Anticosti Island belong to the condensate zone. Only the deeper sequences of the southwestern sector of Anticosti Island are in the diagenetic dry-gas zone. The maximum depth of burial of sequences below now-eroded Silurian to Devonian strata increases from 2.3 km on southwestern Anticosti Island to 4.5 km in the Mingan Archipelago. A late upwarp of the Precambrian basement likely allowed deeper erosion of the Paleozoic strata in the vicinity of the Mingan Archipelago than on Anticosti Island. Differential erosion resulted in a southwestern tilting of equal maturation surfaces. The Macasty Formation, the only source rock of the basin (total organic carbon generally > 3.5%, shows a wide range of thermal maturation levels (potential oil window to diagenetic dry gas). It can be inferred from the burial history of Anticosti Island sequences that oil generation began later but continued for a longer period of geologic time in the northeastern part than in the southeastern part of the island. Oil generation was entirely pre-Acadian in the southern and western parts of Anticosti Island, but pre- and post-Acadian in the northern and eastern parts.


2021 ◽  
pp. 1-18
Author(s):  
Dong-Jin Lee ◽  
Robert J. Elias ◽  
Brian R. Pratt

Abstract Modular coral-like fossils from Lower Ordovician (Tremadocian) thrombolitic mounds in the St. George Group of western Newfoundland were initially identified as Lichenaria and thought to include the earliest tabulate corals. They are here assigned to Amsassia terranovensis n. sp. and Amsassia? sp. A from the Watts Bight Formation, and A. diversa n. sp. and Amsassia? sp. B from the overlying Boat Harbour Formation. Amsassia terranovensis n. sp. and A. argentina from the Argentine Precordillera are the earliest representatives of the genus. Amsassia is considered to be a calcareous alga, possibly representing an extinct group of green algae. The genus originated and began to disperse in the Tremadocian, during the onset of the Great Ordovician Biodiversification Event, on the southern margin of Laurentia and the Cuyania Terrane. It inhabited small, shallow-marine reefal mounds constructed in association with microbes. The paleogeographic range of Amsassia expanded in the Middle Ordovician (Darriwilian) to include the Sino-Korean Block, as well as Laurentia, and its environmental range expanded to include non-reefal, open- and restricted-marine settings. Amsassia attained its greatest diversity and paleogeographic extent in the Late Ordovician (Sandbian–Katian), during the culmination of the Great Ordovician Biodiversification Event. Its range included the South China Block, Tarim Block, Kazakhstan, and Siberia, as well as the Sino-Korean Block and Laurentia, and its affinity for small microbial mounds continued during that time. In the latest Ordovician (Hirnantian), the diversity of Amsassia was reduced, its distribution was restricted to non-reefal environments in South China, and it finally disappeared during the end-Ordovician mass extinction. UUID: http://zoobank.org/ef0abb69-10a6-46de-8c78-d6ec7de185fe


1984 ◽  
Vol 74 (4) ◽  
pp. 183-191 ◽  
Author(s):  
Lorraine E. Craig

ABSTRACTSediments, mainly sandstones, conglomerates and shales, accumulated in small turbidite fans along the northern arc–trench margin of the Iapetus Ocean from middle Ordovician to Silurian time. These fans, together with the underlying pelagic facies and part of the oceanic crust, were sliced and accreted northward resulting in the Lower Palaeozoic accretionary prism which forms the Scottish Southern Uplands and the Longford-Down inlier in Ireland. North Down is the continuation of the Northern belt of the Southern Uplands of Scotland into Ireland, bounded to the S by the Orlock Bridge fault. Lithological and petrographical comparison with the rest of the Northern belt indicates closer affinities with the Southern Uplands of Scotland than with the western end of the Longford-Down inlier. Major ENE—WSW-trending Caledonian strike faults define five blocks, in which new formations of Caradoc and ? Ashgill age are defined. Pillowed spilitic rock, interpreted as a fragment of the ocean-floor, is only recognised in the Ballygrot block. Pelagic and hemipelagic black shales and cherts are overlain by arenaceous sediments in all blocks.


Sign in / Sign up

Export Citation Format

Share Document