extinct group
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Madeleine L. Vickers ◽  
Stefano M. Bernasconi ◽  
Clemens V. Ullmann ◽  
Stefanie Lode ◽  
Nathan Looser ◽  
...  

AbstractUnderstanding the Earth’s climate system during past periods of high atmospheric CO2 is crucial for forecasting climate change under anthropogenically-elevated CO2. The Mesozoic Era is believed to have coincided with a long-term Greenhouse climate, and many of our temperature reconstructions come from stable isotopes of marine biotic calcite, in particular from belemnites, an extinct group of molluscs with carbonate hard-parts. Yet, temperatures reconstructed from the oxygen isotope composition of belemnites are consistently colder than those derived from other temperature proxies, leading to large uncertainties around Mesozoic sea temperatures. Here we apply clumped isotope palaeothermometry to two distinct carbonate phases from exceptionally well-preserved belemnites in order to constrain their living habitat, and improve temperature reconstructions based on stable oxygen isotopes. We show that belemnites precipitated both aragonite and calcite in warm, open ocean surface waters, and demonstrate how previous low estimates of belemnite calcification temperatures has led to widespread underestimation of Mesozoic sea temperatures by ca. 12 °C, raising estimates of some of the lowest temperature estimates for the Jurassic period to values which approach modern mid-latitude sea surface temperatures. Our findings enable accurate recalculation of global Mesozoic belemnite temperatures, and will thus improve our understanding of Greenhouse climate dynamics.


2021 ◽  
pp. 1-18
Author(s):  
Dong-Jin Lee ◽  
Robert J. Elias ◽  
Brian R. Pratt

Abstract Modular coral-like fossils from Lower Ordovician (Tremadocian) thrombolitic mounds in the St. George Group of western Newfoundland were initially identified as Lichenaria and thought to include the earliest tabulate corals. They are here assigned to Amsassia terranovensis n. sp. and Amsassia? sp. A from the Watts Bight Formation, and A. diversa n. sp. and Amsassia? sp. B from the overlying Boat Harbour Formation. Amsassia terranovensis n. sp. and A. argentina from the Argentine Precordillera are the earliest representatives of the genus. Amsassia is considered to be a calcareous alga, possibly representing an extinct group of green algae. The genus originated and began to disperse in the Tremadocian, during the onset of the Great Ordovician Biodiversification Event, on the southern margin of Laurentia and the Cuyania Terrane. It inhabited small, shallow-marine reefal mounds constructed in association with microbes. The paleogeographic range of Amsassia expanded in the Middle Ordovician (Darriwilian) to include the Sino-Korean Block, as well as Laurentia, and its environmental range expanded to include non-reefal, open- and restricted-marine settings. Amsassia attained its greatest diversity and paleogeographic extent in the Late Ordovician (Sandbian–Katian), during the culmination of the Great Ordovician Biodiversification Event. Its range included the South China Block, Tarim Block, Kazakhstan, and Siberia, as well as the Sino-Korean Block and Laurentia, and its affinity for small microbial mounds continued during that time. In the latest Ordovician (Hirnantian), the diversity of Amsassia was reduced, its distribution was restricted to non-reefal environments in South China, and it finally disappeared during the end-Ordovician mass extinction. UUID: http://zoobank.org/ef0abb69-10a6-46de-8c78-d6ec7de185fe


2021 ◽  
Vol 288 (1957) ◽  
pp. 20211239
Author(s):  
Yuzheng Ke ◽  
Rui Wu ◽  
Darla K. Zelenitsky ◽  
Don Brinkman ◽  
Jinfeng Hu ◽  
...  

Turtle eggs containing embryos are exceedingly rare in the fossil record. Here, we provide the first description and taxonomic identification, to our knowledge, of a fossilized embryonic turtle preserved in an egg, a fossil recovered from the Upper Cretaceous Xiaguan Formation of Henan Province, China. The specimen is attributed to the Nanhsiungchelyidae (Pan-Trionychia), an extinct group of large terrestrial turtles (possibly the species Yuchelys nanyangensis ). The egg is rigid, spherical, and is one of the largest and thickest shelled Mesozoic turtle eggs known. Importantly, this specimen allowed identification of other nanhsiungchelyid egg clutches and comparison to those of Adocidae, as Nanhsiungchelyidae and Adocidae form the basal extinct clade Adocusia of the Pan-Trionychia (includes living soft-shelled turtles). Despite the differences in habitat adaptations, nanhsiungchelyids (terrestrial) and adocids (aquatic) shared several reproductive traits, including relatively thick eggshells, medium size clutches and relatively large eggs, which may be primitive for trionychoids (including Adocusia and Carrettochelyidae). The unusually thick calcareous eggshell of nanhsiungchelyids compared to those of all other turtles (including adocids) may be related to a nesting style adaptation to an extremely harsh environment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Camille Frau ◽  
Pierre-Yves Boursicot

Abstract Background Expression of sexual dimorphism is recognised in various fossil groups of molluscs such as the Ammonoidea, an extinct group of shelled cephalopods. During the Mesozoic, the best-documented sexual dimorphic examples are seen in the Jurassic superfamily Perisphinctoidea. It is usually expressed by distinct adult size and apertural modifications between the antidimorphs. Putative males (otherwise referred to as microconch) are small in size and develop lappets at the end of the shell while the females (macroconch) are larger and bear a simple peristome. Dubious cases are, however, known in that superfamily, which often relate to taxonomic biases or lack of diagnostic characters, and some others expose ontogenetic anomalies illustrated by ‘sex reversals’ in the shell morphology and ornamentation. Results The discovery of two specimens of the Callovian Aspidoceratidae Peltoceras athleta (Phillips), having both female and male features, questions the significance and causes of ‘sex reversals’ in the Ammonoidea. The two specimens have started with the macroconch ontogeny of Peltoceras athleta and show an apparent change toward maleness in the adult, as illustrated by their rounded whorl section, ribs retroversion, fading of the tubercles and lappets typical of the microconchs. Few other cases of female-to-male, as well as male-to-female ‘sex reversal’, are known in the fossil record, all belonging to the Jurassic Perisphinctoidea (families Perisphinctidae or Aspidoceratidae). Since all Jurassic Perisphinctoidea are strictly gonochoristic, these ‘sex reversals’ are pathological in nature and are herein referred to as a new forma-type pathology: namely “forma hermaphrodita”. Conclusions In the absence of any clear evidence of injury or parasitism, we hypothesize that such “forma hermaphrodita” individuals illustrate pathologic cases of intersexuality. Little is known about the ammonoid soft parts, and it is not possible to determine which internal sexual organs occur in specimens having both male and female external shell features. Abnormal feminisation and/or masculinisation also occur in modern cephalopods, the latter also grouping only gonochoric species. This phenomenon is similarly illustrated by a change in the adult body size and a mixing of both female and male structures. In that case, intersexuality is either advantageous in the population or caused sterility. The causes of intersexuality are not clearly established but environmental pollutants are evoked in modern cephalopods because they act as endocrine disrupters. ‘Sex reversals’ and/or non-functional reproductive abnormalities have also been caused by endocrine disrupters in various gonochoric gastropods species, but infestation, genetic abnormalities, temperature fluctuations or viruses are multiple causes, which can stimulate or inhibit neural-endocrinal activity by direct gonadal influence, and ultimately lead to feminisation or masculinisation in fishes, isopods, crustaceans, and gastropods as well. Regardless of whether “forma hermaphrodita” is due to an exogenic or endogenic cause, the record of intersex Perisphinctoidea in the Jurassic can be explained by the ready recognition of dimorphic pairs, and the easy collection of large and sufficiently preserved fossil palaeopopulations in which intersex specimens have statistically more chance to be found.


2021 ◽  
pp. 1-8
Author(s):  
Junfeng Guo ◽  
Jian Han ◽  
Heyo Van Iten ◽  
Zuchen Song ◽  
Yaqin Qiang ◽  
...  

Abstract Hexangulaconulariids (Cambrian stages 1–2) are an extinct group of medusozoan polyps having a biradially symmetrical, fan-shaped periderm that is distinct from those of medusozoan polyps showing three-, four-, five-, or six-fold radial symmetry. Hexangulaconulariids exhibit substantial variation in gross morphology, including variation in the number of faces on each of the two major sides of the periderm. An intermediate taxon of hexangulaconulariids with ten faces (five on each major side) was expected. Here we describe a new hexangulaconulariid, Decimoconularia isofacialis new genus new species from Bed 5 of the Yanjiahe Formation (Cambrian Stage 2) in the Three Gorges area of Hubei Province, China. The new taxon differs from other hexangulaconulariids (Arthrochites, Hexaconularia, and Septuconularia) mainly in possessing a total of ten faces. The two lateral margins are each marked by a ridge in about the apertural half of the periderm and by a collinear furrow in about the apical half, while the five faces on each major side are bounded by a furrow in about the apertural half and by a collinear ridge in about the apical half. Among hexangulaconulariids, Decimoconularia and Septuconularia may be more closely related to each other than either genus is to Arthrochites or Hexaconularia. UUID: http://zoobank.org/ca270a3b-25ee-4d1f-bdeb-91a963370e70


2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Blomenkemper ◽  
Robert Bäumer ◽  
Malte Backer ◽  
Abdalla Abu Hamad ◽  
Jun Wang ◽  
...  

Bennettitaleans are an extinct group of gymnosperms that are among the most iconic plants of Earth’s vegetation during the Mesozoic Era. The sudden appearance and rise to dominance of the Bennettitales during the Triassic remains a mystery. Leaf fossils similar to typical bennettitalean foliage occur in late Paleozoic deposits worldwide, but bennettitalean foliage can be identified with certainty only in case the fossils are sufficiently well-preserved to show epidermal features. So far, the characteristic stomatal architecture of the group has never been systematically documented in these putative Paleozoic remains. Here, we present well-preserved bennettitalean leaves from Permian deposits in two widely separated regions of equatorial Pangea. Two species of cuticle-bearing leaf compressions from the late Permian Umm Irna Formation, Jordan, are here formally described as Pterophyllum pottii Bomfleur et Kerp sp. nov. and Nilssoniopteris jogiana Blomenkemper et Abu Hamad sp. nov. Moreover, bulk maceration of samples from the Umm Irna Formation yielded six additional types of dispersed bennettitalean cuticles that are here informally described. In addition, the Cisuralian (early Permian) uppermost part of the Upper Shihhotse Formation exposed at the Palougou section in Shanxi Province, China, has yielded the oldest unambiguous bennettitalean fossils known to date; they consist of fragments of entire-margined leaves with well-preserved cuticles that we assign to Nilssoniopteris shanxiensis Bäumer, Backer et Wang sp. nov. Unlike the characteristic puzzle-patterned cuticles typical of many Jurassic and Cretaceous bennettites, the cuticles of these Permian bennettitalean remains show non-sinuous anticlinal walls, greater variety in stomatal orientation, and rare occurrence of transversely divided subsidiary cells—features that have until now almost exclusively been documented from the hitherto oldest cuticle-bearing Triassic bennettitalean material. Finally, the taxonomic richness, disjunct distribution, and broad variety in macro- and micromorphological features in these Permian bennettitalean remains lead us to suspect that the origin of the group will date back still further in time, and might in fact coincide with very early occurrences of Bennettitales-like foliage from the Pennsylvanian and Cisuralian, such as Pterophyllum cottaeanum, P. eratum, or P. grandeuryi.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James K. Mitchell ◽  
Isaac Garrido-Benavent ◽  
Luis Quijada ◽  
Donald H. Pfister

AbstractSince its resurrection, the resinicolous discomycete genus Sarea has been accepted as containing two species, one with black apothecia and pycnidia, and one with orange. We investigate this hypothesis using three ribosomal (nuITS, nuLSU, mtSSU) regions from and morphological examination of 70 specimens collected primarily in Europe and North America. The results of our analyses support separation of the traditional Sarea difformis s.lat. and Sarea resinae s.lat. into two distinct genera, Sarea and Zythia. Sarea as circumscribed is shown to conservatively comprise three phylospecies, with one corresponding to Sarea difformis s.str. and two, morphologically indistinguishable, corresponding to the newly combined Sarea coeloplata. Zythia is provisionally maintained as monotypic, containing only a genetically and morphologically variable Z. resinae. The new genus Atrozythia is erected for the new species A. klamathica. Arthrographis lignicola is placed in this genus on molecular grounds, expanding the concept of Sareomycetes by inclusion of a previously unknown type of asexual morph. Dating analyses using additional marker regions indicate the emergence of the Sareomycetes was roughly concurrent with the diversification of the genus Pinus, suggesting that this group of fungi emerged to exploit the newly-available resinous ecological niche supplied by Pinus or another, extinct group of conifers. Our phylogeographic studies also permitted us to study the introductions of these fungi to areas where they are not native, including Antarctica, Cape Verde, and New Zealand and are consistent with historical hypotheses of introduction.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 124
Author(s):  
Warren D. Handley ◽  
Trevor H. Worthy

Dromornithids are an extinct group of large flightless birds from the Cenozoic of Australia. Their record extends from the Eocene to the late Pleistocene. Four genera and eight species are currently recognised, with diversity highest in the Miocene. Dromornithids were once considered ratites, but since the discovery of cranial elements, phylogenetic analyses have placed them near the base of the anseriforms or, most recently, resolved them as stem galliforms. In this study, we use morphometric methods to comprehensively describe dromornithid endocranial morphology for the first time, comparing Ilbandornis woodburnei and three species of Dromornis to one another and to four species of extant basal galloanseres. We reveal that major endocranial reconfiguration was associated with cranial foreshortening in a temporal series along the Dromornis lineage. Five key differences are evident between the brain morphology of Ilbandornis and Dromornis, relating to the medial wulst, the ventral eminence of the caudoventral telencephalon, and morphology of the metencephalon (cerebellum + pons). Additionally, dromornithid brains display distinctive dorsal (rostral position of the wulst), and ventral morphology (form of the maxillomandibular [V2+V3], glossopharyngeal [IX], and vagus [X] cranial nerves), supporting hypotheses that dromornithids are more closely related to basal galliforms than anseriforms. Functional interpretations suggest that dromornithids were specialised herbivores that likely possessed well-developed stereoscopic depth perception, were diurnal and targeted a soft browse trophic niche.


2021 ◽  
Author(s):  
Camile Frau ◽  
Pierre-Yves Boursicot

Abstract Background: Expression of a sexual dimorphism is recognised in various fossil groups of molluscs such as the Ammonoidea, an extinct group of shelled cephalopods. During the Mesozoic, the best documented sexual dimorphic examples are seen in the Jurassic superfamily Perisphinctoidea. It is most usually expressed by distinct adult size and apertural modifications between the antidimorphs. Putative males (otherwise referred to as microconch) are small in size and develop lappets at the end of the shell while the females (macroconch) are larger and bear a simple peristome. Dubious cases are, however, known in that superfamily. They most often relate to taxonomic biases or lack of diagnostic characters, and some others expose ontogenetic anomalies illustrated by ‘sex reversals’ in the shell morphology and ornamentation. Results: The discovery of two specimens of the Callovian Aspidoceratidae Peltoceras athleta (Phillips), having both female and male features, questions the significance and causes of ‘sex reversals’ in the Ammonoidea. The two specimens have started with the macroconch ontogeny of Peltoceras athleta, and show an apparent change toward maleness in the adult, as illustrated by their rounded whorl section, ribs retroversion, fading of the tubercles and lappets typical of the microconchs. Few other cases of female-to-male ‘sex reversal’, as well as male-to-female ones, are known in the fossil record, all belonging to the Jurassic Perisphinctoidea (families Perisphinctidae or Aspidoceratidae). Since all Jurassic Perisphinctoidea are strictly gonochoristic, these ‘sex reversals’ are pathological in nature and are herein referred to as a new forma-type pathology: namely “forma hermaphrodita”.Conclusions: In the absence of any clear evidence of injury or parasitism, we hypothesize that such “forma hermaphrodita” individuals illustrate pathologic cases of intersexuality. Little is known about the ammonoid soft parts, and it is not possible to determine which internal sexual organs occur in specimen having both male and female external shell features. Abnormal feminisation and/or masculinisation also occur in modern cephalopods; the latter also grouping only gonochoric species. This phenomenon is similarly illustrated by a change in the adult body size and a mixing of both female and male structures. In that case, intersexuality is either advantageous in the population or caused sterility. The causes of intersexuality are not clearly established but environmental pollutants are evoked in modern cephalopods because they act as endocrine disrupters. ‘Sex reversals’ and/or non-functional reproductive abnormalities have also been caused by endocrine disrupters in various gonochoric gastropods species, but infestation, genetic abnormalities, temperature fluctuations or viruses are multiple causes which can stimulate or inhibit neural-endocrinal activity by direct gonadal influence, and ultimately lead to feminisation or masculinisation in fishes, isopods, crustaceans, and gastropods as well. Regardless of whether “forma hermaphrodita” is due to an exogenic or endogenic cause, the high frequency of intersex Perisphinctoidea in the Jurassic can be explained by the readily recognition of dimorphic pair, and the easy collection of large and sufficiently preserved fossil palaeopopulations in which intersex specimens have statistically more chance to be found.


Terr Plural ◽  
2021 ◽  
Vol 15 ◽  
pp. e2118019
Author(s):  
Jeanninny Carla Comniskey ◽  
◽  
Renato Pirani Ghilardi ◽  
Elvio Pinto Bosetti ◽  
Felipe Nascimento Sousa ◽  
...  

The class Tentaculitoidea is an extinct group composed of small carbonate coniform-shaped invertebrates, distributed from Ordovician to Devonian. This group is more often recorded to the North Hemisphere, being less recorded to South Hemisphere deposits. This study aims (i) to analyze the species found in Brazilian Devonian outcrops, in addition (ii) to investigate their paleogeographic and stratigraphic distribution. The analyzed samples, which come from Paraná, Amazonas, and Parnaíba basins, are hosted in 9 Brazilian Research Centers. It was diagnosed 12 species of tentaculitoids: Tentaculites crotalinus, Tentaculites jaculus, Tentaculites kozlowskii, Tentaculites paranaensis, Tentaculites eldredgianus, Tentaculites trombetensis, Tentaculites stubeli, Tentaculites oseryi, Uniconus ciguelii, Homoctenus katzerii, Styliolina langenii, and Styliolina clavulus. The species from Paraná Basin are different from those recorded in Amazonas and Parnaíba basins, all present distinct stratigraphic ranges (Pragian to Givetian in Paraná Basin and Eifelian to Givetian in Amazonas and Parnaíba basins).


Sign in / Sign up

Export Citation Format

Share Document