A comparison of observed and theoretical postglacial relative sea level in Atlantic Canada

1981 ◽  
Vol 18 (7) ◽  
pp. 1146-1163 ◽  
Author(s):  
Garry Quinlan ◽  
Christopher Beaumont

Two extreme models of late Wisconsinan ice cover in Atlantic Canada and the northeastern U.S.A. are shown to produce postglacial relative sea level curves that bracket existing field observations at six sites throughout the region. This suggests that the true late Wisconsinan ice distribution is probably intermediate to the two contrasting reconstructions proposed. Both ice models predict the existence of four relative sea level zones: an innermost zone closest to the centre of glaciation in which relative sea level falls continuously throughout postglacial time; an outermost zone in which it rises continuously; and two transitional zones in which it first falls and then rises in varying proportions according to the distance from the ice margin. The distinctive forms of the relative sea level curves are probably representative of each of the zones and are unlikely to be significantly perturbed even by large local ice readvances. They, therefore, establish patterns with which future field data are expected to conform. The form that the geological record of relative sea level change is likely to take within each zone is discussed and promising settings for the collection of new data are proposed. The common practice of separating relative sea level into an isostatic and a eustatic component is analysed and shown to be incorrect as usually applied. The practice is also shown to be unnecessary because the models discussed in this paper predict changes in relative sea level that can be compared directly with the observations.

2011 ◽  
Vol 26 (7) ◽  
pp. 768-768
Author(s):  
M. J. Roberts ◽  
J. D. Scourse ◽  
J. D. Bennell ◽  
D. G. Huws ◽  
C. F. Jago ◽  
...  

2008 ◽  
Vol 23 (5) ◽  
pp. 415-433 ◽  
Author(s):  
Anthony C. Massey ◽  
W. Roland Gehrels ◽  
Dan J. Charman ◽  
Glenn A. Milne ◽  
W. Richard Peltier ◽  
...  

2001 ◽  
Vol 38 (7) ◽  
pp. 1081-1092 ◽  
Author(s):  
Gail L Chmura ◽  
Laurie L Helmer ◽  
C Beth Beecher ◽  
Elsie M Sunderland

We examine rates of salt marsh accumulation in three marshes of the outer Bay of Fundy. At each marsh we selected a site in the high marsh with similar vegetation, and thus similar elevation. Accretion rates were estimated by 137Cs, 210Pb, and pollen stratigraphy to estimate rates of change over periods of 30, 100, and ~170 years, respectively. These rates are compared with records from the two closest tide gauges (Saint John, New Brunswick, and Eastport, Maine) to assess the balance of recent marsh accretion and sea-level change. Averaged marsh accretion rates have ranged from 1.3 ± 0.4 to 4.4 ± 1.6 mm·year–1 over the last two centuries. Recent rates are similar to the rate of sea-level change recorded at Eastport, Maine, suggesting that they are in step with recent sea-level change but very sensitive to short-term variation in relative sea level. Based on the pollen stratigraphy in the marsh sediments, the marsh accretion rate was higher during the late 18th to early 19th century. Higher rates probably were due to local increases in relative sea level as a result of neotectonic activity and may have been enhanced by increased sediment deposition through ice rafting.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anders Schomacker ◽  
Wesley R. Farnsworth ◽  
Ólafur Ingólfsson ◽  
Lis Allaart ◽  
Lena Håkansson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document