Vashon Drift: definition of the formation in the Georgia Depression, southwest British Columbia

1985 ◽  
Vol 22 (5) ◽  
pp. 748-757 ◽  
Author(s):  
Stephen R. Hicock ◽  
John E. Armstrong

Vashon Drift was deposited during the Fraser Glaciation (late Wisconsinan) at the time of maximum expansion of the southwestern part of the Cordilleran ice sheet when it filled the Georgia Depression about 14 500 years ago. The drift is present throughout the depression and comprises till and glaciofluvial and glaciolacustrine sediments derived from source areas surrounding the coastal trough. It is overlain by Capilano Sediments and underlain by Quadra Sand, also of Fraser age. Drift deposition was diachronous and complex, probably caused by alpine glaciers coalescing in the trough with the ice margin repeatedly grounding and floating in seawater. Studies of bedrock striae, till fabrics, and clast provenance reveal that Vashon ice movement was generally southward, although locally controlled by topography. A time–space diagram is presented that confirms the long-held hypothesis that advance and decay of Vashon ice were rapid.

1988 ◽  
Vol 25 (6) ◽  
pp. 938-941 ◽  
Author(s):  
John J. Clague ◽  
Ian R. Saunders ◽  
Michael C. Roberts

New radiocarbon dates on wood from two exposures in Chilliwack valley, southwestern British Columbia, indicate that this area was ice free and locally forested 16 000 radiocarbon years ago. This suggests that the Late Wisconsinan Cordilleran Ice Sheet reached its maximum extent in this region after 16 000 years BP. The Chilliwack valley dates are the youngest in British Columbia that bear on the growth of the Cordilleran Ice Sheet.


2007 ◽  
Vol 44 (4) ◽  
pp. 445-457 ◽  
Author(s):  
Jan M Bednarski ◽  
I Rod Smith

Mapping the surficial geology of the Trutch map area (NTS 94G) provides new data on the timing of continental and montane glaciations along the Foothills of northeastern British Columbia. Striated surfaces on mountain crests were dated to the Late Wisconsinan substage by cosmogenic dating. The striations were produced by eastward-flowing ice emanating from the region of the Continental Divide. This ice was thick enough to cross the main ranges and overtop the Rocky Mountain Foothill summits at 2000 m above sea level (asl). It is argued here that such a flow, unhindered by topography, could only have been produced by the Cordilleran Ice Sheet and not by local cirque glaciation. During this time, the Cordilleran Ice Sheet dispersed limestone and schist erratics of western provenance onto the plains beyond the mountain front. Conversely, the Laurentide Ice Sheet did not reach its western limit in the Foothills until after Cordilleran ice retreated from the area. During its maximum, the Laurentide ice penetrated the mountain valleys up to 17 km west of the mountain front, and deposited crystalline erratics from the Canadian Shield as high as 1588 m asl along the Foothills. In some valleys a smaller montane advance followed the retreat of the Laurentide Ice Sheet.


2016 ◽  
Vol 85 (3) ◽  
pp. 409-429 ◽  
Author(s):  
Adrian Scott Hickin ◽  
Olav B. Lian ◽  
Victor M. Levson

Geomorphic, stratigraphic and geochronological evidence from northeast British Columbia (Canada) indicates that, during the late Wisconsinan (approximately equivalent to marine oxygen isotope stage [MIS] 2), a major lobe of western-sourced ice coalesced with the northeastern-sourced Laurentide Ice Sheet (LIS). High-resolution digital elevation models reveal a continuous 75 km-long field of streamlined landforms that indicate the ice flow direction of a major northeast-flowing lobe of the Cordilleran Ice Sheet (CIS) or a montane glacier (>200 km wide) was deflected to a north-northwest trajectory as it coalesced with the retreating LIS. The streamlined landforms are composed of till containing clasts of eastern provenance that imply that the LIS reached its maximum extent before the western-sourced ice flow crossed the area. Since the LIS only reached this region in the late Wisconsinan, the CIS/montane ice responsible for the streamlined landforms must have occupied the area after the LIS withdrew. Stratigraphy from the Murray and Pine river valleys supports a late Wisconsinan age for the surface landforms and records two glacial events separated by a non-glacial interval that was dated to be of middle Wisconsinan (MIS 3) age.


2017 ◽  
Vol 54 (1) ◽  
pp. 52-75 ◽  
Author(s):  
David H. Huntley ◽  
Adrian S. Hickin ◽  
Olav B. Lian

This paper reports on the landform assemblages at the northern confluence of the Late Wisconsinan Laurentide and Cordilleran ice sheets with montane and piedmont glaciers in the northern Rockies and southern Mackenzie Mountains. Recent observations in northeastern British Columbia refine our knowledge of the pattern and style of ice sheet retreat, glacial lake formation, and meltwater drainage. At the onset of deglaciation, confluent Laurentide and Cordilleran terminal ice margins lay between 59°N, 124°30′W and 60°N, 125°15′W. From this terminal limit, ice sheets retreated into north-central British Columbia and Yukon Territory, with remnant Cordilleran ice and montane glaciers confined to mountain valleys and the Liard Plateau. Distinctive end moraines are not associated with the retreat of Cordilleran ice in these areas. Laurentide ice retreated northeastward from uplands and the plateaus; then separated into lobes occupying the Fort Nelson and Petitot river valleys. Ice-retreat landforms include recessional end moraines (sometimes overridden and drumlinized), hill–hole pairs, crevasse-fill deposits, De Geer-like ribbed till ridges, hummocky moraines, kames, meltwater features, and glacial lake deposits that fall within the elevation range of glacial Lake Liard and glacial Lake Fort Nelson (ca. 840–380 m). Meltwater and sediment transport into glacial lakes Fort Nelson, Liard, Nahanni, and Mackenzie was sustained by remnant ice in the Liard River and Fort Nelson River drainage basins until the end of glaciation. Optical dating of sand from stabilized parabolic dunes on the Liard Plateau indicates that proglacial conditions, lake formation, and drainage began before 13.0 ± 0.5 ka (calendar years). The Petitot, Fort Nelson, and Liard rivers all occupy spillways incised into glacial deposits and bedrock by meltwater overflow from glacial lakes Peace and Hay.


2020 ◽  
Author(s):  
Helen Dulfer ◽  
Martin Margold

<p>The Cordilleran Ice Sheet (CIS) repeatedly covered western Canada during the Pleistocene and attained a volume and area similar to that of the present-day Greenland Ice Sheet. Deglaciation of the CIS following the Last Glacial Maximum (LGM) directly affected atmosphere and ocean circulation, eustatic sea level, and human migration from Asia to North America. It has recently been shown that the rapid climate oscillations at the end of the Pleistocene had a dramatic effect on the CIS. Data on glacial isostatic adjustment and cosmogenic nuclide exposure ages indicate that abrupt warming at the onset of the Bølling-Allerød caused significant thinning of the ice sheet, resulting in a fifty percent reduction in mass, while the Younger Dryas cooling caused the expansion of alpine glaciers across the mountains of western Canada. However, the mountainous subglacial terrain makes it challenging to reconstruct the regional-scale deglaciation dynamics of the ice sheet, and its configuration during this period of rapid change remains poorly constrained. </p><p>Here we use the glacial landform record to reconstruct the ice sheet configuration for the central sector of the CIS, over the Cassiar and Omineca Mountains in northern British Columbia, during the Late Pleistocene climate reversals. We present the first regional-scale reconstruction of the CIS following the Bølling-Allerød warming, whereby the ice sheet was reduced to a labyrinth of valley glaciers fed by ice dispersal centres located over the Skeena Mountains in the south and Coast Mountains in the west. Additionally, numerous lateral and terminal late glacial moraines delineate the extent of alpine glaciers, ice caps and ice fields that regrew on mountain peaks above the CIS during the Younger Dryas. Cross-cutting relationships indicate that the valley glaciers of the CIS were slower to respond to the Younger Dryas cooling than the mountain glaciers.</p>


1987 ◽  
Vol 24 (1) ◽  
pp. 147-158 ◽  
Author(s):  
John J. Clague

Thick valley-fill sediments in the vicinity of Williams Lake, British Columbia, provide a detailed record of the late Quaternary history of an area near the centre of the former Cordilleran Ice Sheet. Stratigraphic units assigned to the late Wisconsinan Fraser Glaciation, the preceding (penultimate) glaciation, and the present interglaciation are described. Especially noteworthy are (1) thick units of sand and gravel deposited by braided streams, perhaps during periods of ice-sheet growth; and (2) complex glaciolacustrine sediments that accumulated in ice-dammed lakes during periods of deglaciation.Glaciers from the Coast and Cariboo mountains coalesced and flowed north over central British Columbia during late Wisconsinan time. Fraser Glaciation advance sediments and older Pleistocene deposits were partially removed by this ice sheet, and the eroded remnants were mantled with till. At the end of the Fraser Glaciation, the Cordilleran Ice Sheet downwasted and retreated southward along an irregular front across the study area. Parts of the ice sheet stagnated and disintegrated into tongues confined to valleys. Sediment carried by melt streams flowing from decaying ice masses was deposited in glacial lakes, in stream channels, and on floodplains.


1990 ◽  
Vol 34 (2) ◽  
pp. 208-226 ◽  
Author(s):  
John J. Clague ◽  
Richard J. Hebda ◽  
Rolf W. Mathewes

AbstractTwo exposures of organic-rich interstadial sediments in central British Columbia provide information on middle Wisconsinan environments and climates near the center of the region subsequently covered by the late Wisconsinan Cordilleran Ice Sheet. Interstadial sediments at Bullion Pit overlie drift of early Wisconsinan or older age and underlie thick drift of late Wisconsinan age. Alluvium (or colluvium) and peat were deposited on the floor of the ancestral Quesnel River valley 46,000–40,000 14C yr ago when the vegetation consisted of spruce forest with dry openings and local fens and the climate was colder and perhaps drier than today. This is broadly consistent with paleoclimatic reconstructions for the same time interval for Babine Lake, 400 km to the northwest, and for Meadow Creek, 400 km to the southeast. Plant-rich pond sediments containing tephra layers and vertebrate remains are exposed between two drifts in a ravine at Mexican Hill, 30 km east of Quesnel. Although they may be contemporaneous with the Bullion Pit beds, the nonglacial sediments at Mexican Hill more likely were deposited sometime after the warmest part of the last interglaciation, but prior to 50,000 yr B.P. At that time, the vegetation at Mexican Hill probably was parkland. The present vegetation at Mexican Hill is boreal forest; thus, a drier and possibly cooler climate is indicated.


2008 ◽  
Vol 69 (2) ◽  
pp. 188-200 ◽  
Author(s):  
Thomas R. Lakeman ◽  
John J. Clague ◽  
Brian Menounos

Sharp-crested moraines, up to 120 m high and 9 km beyond Little Ice Age glacier limits, record a late Pleistocene advance of alpine glaciers in the Finlay River area in northern British Columbia. The moraines are regional in extent and record climatic deterioration near the end of the last glaciation. Several lateral moraines are crosscut by meltwater channels that record downwasting of trunk valley ice of the northern Cordilleran ice sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran ice sheet and verify a late-glacial age for the moraines. Sediment cores were collected from eight lakes dammed by the moraines. Two tephras occur in basal sediments of five lakes, demonstrating that the moraines are the same age. Plant macrofossils from sediment cores provide a minimum limiting age of 10,550–10,250 cal yr BP (9230±5014C yr BP) for abandonment of the moraines. The advance that left the moraines may date to the Younger Dryas period. The Finlay moraines demonstrate that the timing and style of regional deglaciation was important in determining the magnitude of late-glacial glacier advances.


2021 ◽  
Author(s):  
Helen Dulfer ◽  
Martin Margold

<p>The Cordilleran Ice Sheet (CIS) repeatedly covered western Canada during the Pleistocene and attained a volume and area similar to that of the present-day Greenland Ice Sheet at the Last Glacial Maximum. Numerical modelling studies of the CIS during the last glacial-interglacial cycle indicate the central sector of this ice sheet, located in mountainous northern British Columbia, played an important role during both the advance and retreat phases. Additionally, the models indicate that the rapid climate oscillations at the end of the Pleistocene had a dramatic effect on the CIS. The abrupt warming at the onset of the Bølling-Allerød caused significant thinning of the ice sheet, resulting in a fifty percent reduction in mass, while the subsequent cooling caused the expansion of alpine glaciers across the former central sector of the CIS. However, the mountainous terrain and remote location have thus far impeded our understanding of this important region of the CIS, and the ice sheet configuration during the Late Glacial remains poorly constrained. </p><p>Here we use the glacial landform record to reconstruct the deglaciation dynamics of the central sector of the CIS during the Late Pleistocene climate reversals. Numerous high elevation meltwater channels suggests the early emergence of mountain peaks above the ice sheet and the configuration of ice marginal landforms, particularly lateral meltwater channels, eskers, kame terraces and ice-contact deltas, allows the westward retreat of the ice margin to be traced towards ice dispersal centres in the Skeena and Coast mountains. Hundreds of arcuate, sharp-crested terminal moraines delineate the extent of alpine glaciers, ice caps and ice fields that regrew on mountain peaks above the CIS and numerical dating indicates that this readvance occurred during the Late Glacial period. Additionally, at some locations, cross-cutting relationships preserve the interaction of the local readvance glaciers with the trunk glaciers of the CIS, allowing the extent of the central sector of the CIS during the Late Glacial period to be reconstructed for the first time.  </p>


Sign in / Sign up

Export Citation Format

Share Document