The northern Cascadia subduction zone at Vancouver Island: seismic structure and tectonic history

1990 ◽  
Vol 27 (3) ◽  
pp. 313-329 ◽  
Author(s):  
R. D. Hyndman ◽  
C. J. Yorath ◽  
R. M. Clowes ◽  
E. E. Davis

The structure and Tertiary tectonic history of the northern Cascadia subduction zone have been delineated by a series of new multichannel seismic lines acquired across the continental shelf to the deep sea, combined with adjacent land multichannel seismic data and results from a wide range of other geophysical and geological studies. The top of the downgoing oceanic crust is imaged for a remarkable distance downdip from the deep ocean basin to a depth of 40 km beneath Vancouver Island. The reflection depths are in good agreement with seismic refraction models and Benioff–Wadati seismicity. Two broad reflective bands imaged as dipping gently landward at depths of about 15 and 30 km on the land lines merge to a single reflector band offshore. They may represent underplated oceanic material or, alternatively, they may not be structural but may be zones of contrasting physical properties, perhaps representing trapped fluid. Two narrow terranes, the Mesozoic marine sedimentary Pacific Rim Terrane and the Eocene marine volcanic Crescent Terrane, have been thrust beneath, and accreted to, the margin in the Eocene, about 42 Ma, near the start of the present phase of subduction. They provide a landward-dipping backstop to the large sediment wedge accreted since that time. The deformation front is characterized by mainly landward-dipping thrust faults that cut close to basement. This result and the mass balance of the incoming sediment compared with that present in the accreted wedge suggest that there is little subduction of sediment into the mantle. The Tofino Basin sediments, up to 4 km in thickness, have been deposited on the continental shelf over the accreted terranes and the developing accretionary wedge.

1996 ◽  
Vol 33 (9) ◽  
pp. 1294-1307 ◽  
Author(s):  
A. J. Calvert

An interpretation of the deep structure of the continental shelf offshore southern Vancouver Island, subject to constraints from other geophysical data, is derived by combining seismic reflection profiles shot in 1989 with those from an earlier 1985 survey. Accretionary wedge sediments, which extend landward beneath the volcanic Crescent terrane, comprise two primary units, both of which have shortened through duplex formation. The maximum thickness of the Crescent terrane, 6–8 km, occurs just seaward of its contact with the inboard, largely metasedimentary Pacific Rim terrane. The E region of reflectivity, first detected dipping landward beneath Vancouver Island, is regionally extensive, being observed on all the seismic profiles. The E reflectivity thins seaward and splits into two or more strands that probably link into major faults within the accreted sedimentary wedge. Reflections from the interplate décollement beneath the outer continental shelf separate from the downgoing plate, continue into the deepest level of the E reflectivity, and are interpreted to represent a single décollement surface above which imbrication of accreted units occurred. It is proposed that at the southern end of Vancouver Island the E reflections represent mainly underthrust sediments above a former subduction décollement, both of which were incorporated into the overlying continent when the subduction thrust stepped down into the descending oceanic plate. This change in depth of the subduction thrust underplated one or more mafic units to the continent. The reflection from the top of the subducting Juan de Fuca plate appears to be around 5 km shallower farther north along the margin, indicating that the underplated region could be confined to the embayment in the Cascadia subduction zone.


1997 ◽  
Vol 34 (3) ◽  
pp. 317-335 ◽  
Author(s):  
Ron M. Clowes ◽  
David J. Baird ◽  
Sonya A. Dehler

The northern Cascadia subduction zone is a region of convergence between the oceanic Explorer and northern Juan de Fuca plates and the continental North American plate. Potential field and new seismic reflection data coupled with previous seismic results and geology enable derivation of a series of density – magnetic susceptibility cross sections and a block density model from the ocean basin to the volcanic arc from 2.5- and 3-dimensional interpretations. The lateral extent and thickness of the accreted wedge vary significantly along the zone. The narrow, metasedimentary Pacific Rim terrane lies immediately west of Wrangellia and extends the length of Vancouver Island, consistent with its emplacement by strike-slip faulting following the accretion of Wrangellia. The ophiolitic Crescent terrane is a narrow slice lying seaward of the Pacific Rim terrane but not extending northward beyond the Juan de Fuca plate. In this region, the Crescent terrane was emplaced in a strike-slip or obliquely convergent style during the latter stages of emplacement of Pacific Rim terrane. Below the accreted terranes, the Explorer plate is shallower than Juan de Fuca plate, resulting in a thinner crust. High-density lower crustal material lies beneath the western edge of Vancouver Island, supporting interpretations of wide-scale underplating of Wrangellia. The shape of the boundary region between Wrangellia and the Coast belt to the east varies along strike and may be controlled by properties of preexisting plutonic rocks. The low-density Coast belt plutons extend throughout most of the crust and are underlain by a lowermost crustal high-density layer, which may be indicative of fractionation accompanying magma generation.


1983 ◽  
Vol 20 (5) ◽  
pp. 719-741 ◽  
Author(s):  
R. M. Ellis ◽  
G. D. Spence ◽  
R. M. Clowes ◽  
D. A. Waldron ◽  
I. F. Jones ◽  
...  

The seismic structure of the British Columbia continental margin has been investigated using four reversed refraction profiles. The profile across strike extended 350 km from the volcanic arc on the continent to the deep ocean of the Juan de Fuca Plate; the three profiles along strike were located on Vancouver Island, on the continental shelf, and in the deep ocean on the Juan de Fuca Plate. Interpretation of the profile along Vancouver Island yields a well constrained model for the upper crust with velocity increasing from ~5.3 km/s at the surface to ~6.4 km/s at 2 km depth to ~6.75 km/s at 15.5 km depth where the velocity increases sharply to ~7 km/s. The velocity structure of the deep crust and the crustal thickness are poorly constrained. Four possible velocity functions, based on ambiguous first arrivals and (or) secondary phases interpreted as Moho reflections, are presented. The preferred one includes a deep crustal low velocity zone with a crustal thickness of 37 km; models with a constant 7.1 km/s deep crust require thicknesses of 52 km. Preliminary results from the profile across strike show the dip of the basement towards the continent steepens from approximately 1.4° immediately west of the continental rise to ~4° beneath the rise. Sediment velocities increase as the sedimentary layer thickens towards the shelf. The Moho, with velocity near 8 km/s, appears to dip at similar angles in this region; the dip is ~6° from the edge of the shelf to the central portion of Vancouver Island; here there is an abrupt thickening of the continental crust by about 10 km with a flat-lying Moho to the east. This suggests a contact between subducting oceanic Moho and continental Moho. A small positive velocity gradient is required in the mantle.Two short reflection lines, one using explosives and the other a large air gun fired in an inlet, were recorded on a land-based multichannel reflection system. These were run to test the feasibility of obtaining coherent reflections to upper mantle depths in this complex geological environment, and of acquiring deep reflection data in coastal areas with an air-gun source. The preliminary explosion section showed reflections near 4.4 and 6.8 s. The depths of these reflections correspond closely to the 15.5 km crustal refractor and the top of the subducting oceanic lithosphere, respectively. Dip on the deeper reflector is close to that estimated from the refraction profile. Without stacking or velocity filtering, the air-gun recordings on a line adjacent to the explosion profile show arrivals of energy at similar times.


Sign in / Sign up

Export Citation Format

Share Document