Contrasting tectono-stratigraphy and structure in the Coast Belt near Chilko Lake, British Columbia: unrelated terranes or an arc – back-arc transect?

1994 ◽  
Vol 31 (11) ◽  
pp. 1700-1713 ◽  
Author(s):  
Paul J. Umhoefer ◽  
Margaret E. Rusmore ◽  
G. J. Woodsworth

Stratigraphy and structural styles vary greatly in two areas of the Coast Belt near Chilko Lake (Chilcotin Ranges in the east and Coast Mountains in the west). No definite continuity between the two belts has been established in the pre-mid-Cretaceous geology, but this area may be a long-lived, episodic magmatic arc and nearby arc-related basin. The stratigraphic contrasts may reflect inherent differences between an arc and related basinal sequence. Triassic volcanic-arc sequences are part of the Stikine (western belt) and Cadwallader (eastern belt) terranes, which may be part of the same arc. The Jurassic is represented by one dated pluton in the west compared with almost continuous deposition of volcanogenic clastic rocks in the east. Lower Cretaceous sequences in the west and east may represent a volcanic arc and back-arc basin. The Taylor Creek Group (Albian) is the first definitive link between the two belts and represents an arc and intra-arc or back-arc basin. The structural evolution of the two belts also differs significantly. The early Late Cretaceous Eastern Waddington thrust belt comprises all major structures in the west, but only has minor expression in the east. Most of the structures in the east are part of the latest Cretaceous(?) to early Tertiary dextral-strike-slip, Yalakom fault system. These differences were most likely caused by the Late Cretaceous change from nearly orthogonal subduction to a dextral-oblique convergent margin.

1991 ◽  
Vol 28 (6) ◽  
pp. 912-928 ◽  
Author(s):  
William C. McClelland ◽  
Lawrence M. Anovitz ◽  
George E. Gehrels

Thermobarometric data from amphibolite-facies metamorphic rocks west of the Coast Mountains batholith provide important constraints on the structural evolution of the mid-Cretaceous Sumdum–Fanshaw fault system and Late Cretaceous – Paleocene Le Conte Bay shear zone in central southeastern Alaska. Ductile structures that make up the Sumdum–Fanshaw fault system record the east-directed underthrusting of the Alexander terrane and Gravina belt beneath the Ruth assemblage (Yukon–Tanana terrane) and Taku terrane. These structures are truncated to the east by the Le Conte Bay shear zone. Temperature and pressure estimates calculated from the garnet–biotite geothermometer and garnet–rutile–ilmenite–plagioclase–quartz geobarometer suggest juxtaposition of the Gravina belt and Yukon–Tanana terrane at relatively deep levels (>7 kbar) during mid-Cretaceous time. Rocks west of the Le Conte Bay shear zone yield thermobarometric estimates of 465–890 ± 50 °C and 7.1–11.8 ± 1 kbar (1 kbar = 100 MPa). Late Cretaceous and Paleocene metamorphism associated with the Le Conte Bay shear zone reflects synkinematic emplacement of tonalitic intrusions along the western margin of the Coast Mountains batholith. Thermobarometric results from samples adjacent to the tonalite bodies record uplift and retrogression and suggest tonalite emplacement at 7.5–7.7 ± 1 kbar. An eastward increase in thermobarometric estimates observed in Thomas and Le Conte bays is inferred to record uplift and east-side-up tilting of rocks west of and within the Le Conte Bay shear zone during Late Cretaceous and Paleocene time. Rocks within the Le Conte Bay shear zone were apparently rapidly (1.5–2 mm/a) uplifted to shallow crustal levels prior to mid-Eocene time. Thermobarometric results for the Petersburg region are similar to those previously reported along the western flank of the northern Coast Mountains batholith.


2009 ◽  
Vol 147 (2) ◽  
pp. 193-205 ◽  
Author(s):  
MANUEL SUÁREZ ◽  
RITA DE LA CRUZ ◽  
MICHAEL BELL ◽  
ALAIN DEMANT

AbstractThe Mesozoic Austral Basin of Patagonia, in southwestern Gondwana, experienced a major tectonic segmentation during Aptian times. Sometime between 121 and 118 Ma (Aptian), the northern part of the Austral Basin, known as the Aisén Basin or Río Mayo Embayment, was inverted, with the sediments overlain by calc-alkaline subaerial volcanic rocks of Aptian to Maastrichtian age. In the southern segment of the Austral Basin, known as the Magallanes Basin, predominantly marine sediments accumulated until Cenozoic times in a back-arc position, relative to a magmatic arc located to the west. The subduction-related N–S-trending volcanic chains of both segments were geographically displaced during Aptian to Late Cretaceous times. In the Aisén segment north of ~49–50° S, the volcanic chain was located further east than the coeval arc in the Magallanes segment. A transform fault connected the trenches of both segments, with the Aisén segment dipping at a shallower angle than the Magallanes segment.


2002 ◽  
Vol 39 (7) ◽  
pp. 1143-1167 ◽  
Author(s):  
Paul J Umhoefer ◽  
Paul Schiarizza ◽  
Matt Robinson

The upper Middle Jurassic to Lower Cretaceous Relay Mountain Group is the lower part of the northern Tyaughton–Methow basin, southwestern British Columbia. The Relay Mountain Group consists of ~2700–3400 m of clastic rocks that we subdivide into three formal formations. The Callovian and lower Oxfordian Tyoax Pass Formation is marine shale and sandstone turbidites. The Teepee Mountain Formation consists of upper Oxfordian to Valanginian shallow marine clastic rocks with common Buchia and fluvial and marginal marine facies in the upper part of the unit in the northwest. These rocks overlie the lower formation across an abrupt conformable to disconformable contact. The Hauterivian (and Barremian?) Potato Range Formation consists of clastic rocks that are marine in the southeast, mainly nonmarine to the northwest, and derived from the west. This unit displays an abrupt conformable to disconformable contact with the middle formation and locally rests above the lower formation across an angular unconformity. The Relay Mountain Group and correlative strata of the southeastern Coast Belt form an overlap assemblage above the Bridge River and Cadwallader (including Methow) terranes and link them by late Middle Jurassic time. The early Relay Mountain Group appears to have been a fore-arc basin, possibly along an oblique–convergent margin in the middle unit. The upper unit indicates major changes to a back-arc basin linked to the Ottarasko, and possibly Gambier, arc to the west. This is the oldest probable link (~130 Ma) between the southeastern and southwestern Coast belts.


2020 ◽  
Vol 47 (3) ◽  
pp. 469
Author(s):  
Christian Creixell ◽  
Javier Fuentes ◽  
Hessel Bierma ◽  
Esteban Salazar

Cretaceous porphyry copper deposits of northern Chile (28º-29º30’ S) are genetically related with dacitic to dioritic porphyries and they represent a still poorly-explored target for Cu resources. The porphyries correspond to stocks distributed into two separated discontinuous NS trending belts of different age. The location of these porphyries is generally adjacent to orogen-parallel major fault systems that extend along the studied segment and also have a marked temporal relationship with deformation events registered along these structures. A first episode of Cu-bearing porphyry emplacement took place between 116 and 104 Ma (Mina Unión or Frontera, Cachiyuyo, Punta Colorada, Dos Amigos, Tricolor porphyries). These Early Cretaceous dacite to diorite porphyries are spatially associated with the eastern segments of the Atacama Fault System, which records sinistral transpression that started at 121 Ma producing ground uplift, consequent denudation and exhumation of the Early Cretaceous magmatic arc. This resulted in a change from marine to continental deposition with an angular unconformity in the site of the back-arc basin after of eastward migration of the deformation around 112-110 Ma. At the scale of the continental margin, this deformation is correlated with early stage of the Mochica Orogenic event described in Perú. A second episode of Cu-bearing porphyry emplacement occurred between 92 and 87 Ma (Elisa, Johana, Las Campanas and La Verde deposits), which are spatially and temporally associated with the regional-scale Las Cañas-El Torito reverse fault, active between 89 and 84 Ma, during the Peruvian Orogenic Phase. This fault up thrust to the west part of the Chañarcillo Group rocks (Lower Cretaceous) over the younger upper levels of the Cerrillos Formation (Upper Cretaceous). The integrated geological mapping and geochemical data of the Early to Late Cretaceous volcanic rocks indicates that both Early Cretaceous sinistral transpression and Late Cretaceous east-west compression were not significant in promote changes in magma genesis, except for slight changes in trace element ratios (increase in Th/Ta, Nb/Ta and La/Yb) suggesting that the Late Cretaceous deformation event produced only slightly increase in crustal thickness (>40 km), but far from being comparable to major Cenozoic orogenic phases, at least along the magmatic arc to back-arc domains in the study area. Finally, our study give insights about regional geological parameters that can be used as a first order guide for exploration of Cu resources along Cretaceous magmatic belts of northern Chile, where both Early and Late Cretaceous Cu-bearing porphyry intrusions are restricted to a large structural block bounded to the west and east by Cretaceous fault systems.


1991 ◽  
Vol 28 (6) ◽  
pp. 939-946 ◽  
Author(s):  
Scott D. Samson ◽  
P. Jonathan Patchett ◽  
William C. McClelland ◽  
George E. Gehrels

Nd and Sr isotopic ratios are reported from 15 samples of plutons of the northern Coast Mountains batholith (CMB), between. the Alexander–Wrangellia terrane and the Stikine terrane of southeastern Alaska. Samples of plutons that are part of the Late Cretaceous – Eocene CMB suite have a range in initial εNd of −3.0 to −0.2 and 87Sr/86Sr of 0.70494–0.70607. There is no correlation of isotopic ratio with age, lithology, or geographic location of these plutons. Two plutons that are probably older than the bulk of the CMB plutons have present-day εNd values of −6.8 and −2.6.The Late Cretaceous – Eocene plutons have Nd depleted-mantle model ages (tDM) of 620–1070 Ma. These data indicate that the northern CMB must contain a significant component of old, evolved continental crust. The presence of an old crustal component is further demonstrated by inherited zircons of average Early Proterozoic age contained in some plutons. The mid to Late Proterozoic tDM ages of the CMB plutons are therefore a result of a mixture of Early Proterozoic crustal material with. younger, juvenile crust. The most likely source of this old crustal component is the Yukon–Tanana terrane, a fragment composed of ancient crustal material that occurs within and directly to the west of the northern CMB. The juvenile component is probably a combination of material derived from the mantle and from anatexis of the surrounding juvenile terranes. Crustal anatexis may have occurred as a result of the intrusion of mafic melts related to subduction along the outboard margin of the Alexander–Wrangellia terrane, by crustal thickening due to the underthrusting of the Alexander–Wrangellia terrane beneath the Yukon–Tanana and Stikine terranes, or by a combination of both processes.


2021 ◽  
Author(s):  
Simone Masoch ◽  
Rodrigo Gomila ◽  
Michele Fondriest ◽  
Erik Jensen ◽  
Tom Mitchell ◽  
...  

<p>The nucleation and evolution of major crustal-scale seismogenic faults in the crystalline basement as well as the process of strain localization represent a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we addressed the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a >40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile). Seismic faulting occurred at 5-7 km depth and ≤ 270 °C in a fluid-rich environment as recorded by extensive propylitic alteration and epidote-chlorite veining. The ancient (125-118 Ma) seismicity is attested by the widespread occurrence of pseudotachylytes both in the fault core and in the damage zone. Field geological surveys indicate nucleation of the BFZ on precursory geometrical anisotropies represented by magmatic foliation of plutons (northern and central segments) and andesitic dyke swarms (southern segment) within the heterogeneous crystalline basement. Faulting exploited the segments of precursory anisotropies that were favorably oriented with respect to the long-term stress field associated with the oblique ancient subduction. The large-scale sinuous geometry of the BFZ may result from linkage of these anisotropy-pinned segments during fault growth. This evolution may provide a model to explain the complex fault pattern of the crustal-scale Atacama Fault System.</p>


1992 ◽  
Vol 32 (1) ◽  
pp. 231 ◽  
Author(s):  
A.M.G. Moore ◽  
J.B. Willcox ◽  
N.F. Exon ◽  
G.W. O'Brien

The continental margin of western Tasmania is underlain by the southern Otway Basin and the Sorell Basin. The latter lies mainly under the continental slope, but it includes four sub-basins (the King Island, Sandy Cape, Strahan and Port Davey sub-basins) underlying the continental shelf. In general, these depocentres are interpreted to have formed at the 'relieving bends' of a major left-lateral strike-slip fault system, associated with 'southern margin' extension and breakup (seafloor spreading). The sedimentary fill could have commenced in the Jurassic; however, the southernmost sub-basins (Strahan and Port Davey) may be Late Cretaceous and Paleocene, respectively.Maximum sediment thickness is about 4300 m in the southern Otway Basin, 3600 m in the King Island Sub-basin, 5100 m in the Sandy Cape Basin, 6500 m in the Strahan Sub-basin, and 3000 m in the Port Davey Sub-basin. Megasequences in the shelf basins are similar to those in the Otway Basin, and are generally separated by unconformities. There are Lower Cretaceous non-marine conglomerates, sandstones and mudstones, which probably include the undated red beds recovered in two wells, and Upper Cretaceous shallow marine to non-marine conglomerates, sandstones and mudstones. The Cainozoic sequence often commences with a basal conglomerate, and includes Paleocene to Lower Eocene shallow marine sandstones, mudstones and marl, Eocene shallow marine limestones, marls and sandstones, and Oligocene and younger shallow marine marls and limestones.The presence of active source rocks has been demonstrated by the occurrence of free oil near TD in the Cape Sorell-1 well (Strahan Sub-basin), and thermogenic gas from surficial sediments recovered from the upper continental slope and the Sandy Cape Sub-basin. Geohistory maturation modelling of wells and source rock 'kitchens' has shown that the best locations for liquid hydrocarbon entrapment in the southern Otway Basin are in structural positions marginward of the Prawn-1 well location. In such positions, basal Lower Cretaceous source rocks could charge overlying Pretty Hill Sandstone reservoirs. In the King Island Sub-Basin, the sediments encountered by the Clam-1 well are thermally immature, though hydrocarbons generated from within mature Lower Cretaceous rocks in adjacent depocentres could charge traps, providing that suitable migration pathways are present. Whilst no wells have been drilled in the Sandy Cape Sub-basin, basal Cretaceous potential source rocks are considered to have entered the oil window in the early Late Cretaceous, and are now capable of generating gas/condensate. Upper Cretaceous rocks appear to have entered the oil window in the Paleocene. In the Strahan Sub-Basin, mature Cretaceous sediments in the depocentres are available to traps, though considerable migration distances would be required.It is concluded that the west Tasmania margin, which has five strike-slip related depocentres and the potential to have generated and entrapped hydrocarbons, is worthy of further consideration by the exploration industry. The more prospective areas are the southern Otway Basin, and the Sandy Cape and Strahan sub-basins of the Sorell Basin.


2014 ◽  
Vol 40 (3) ◽  
Author(s):  
Carolina Canora ◽  
José J. Martínez-Díaz ◽  
Pilar Villamor ◽  
Alejandra Staller ◽  
Kelvin Berryman ◽  
...  

2021 ◽  
Author(s):  
Simone Masoch ◽  
Rodrigo Gomila ◽  
Michele Fondriest ◽  
Erik Jensen ◽  
Thomas Matthew Mitchell ◽  
...  

Tectonics ◽  
2021 ◽  
Author(s):  
Simone Masoch ◽  
Rodrigo Gomila ◽  
Michele Fondriest ◽  
Erik Jensen ◽  
Thomas Mitchell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document