Upper Lower Cambrian depositional sequence in Avalonian New Brunswick

1996 ◽  
Vol 33 (3) ◽  
pp. 404-417 ◽  
Author(s):  
Ed Landing ◽  
Stephen R. Westrop

The Hanford Brook Formation (emended) is a thin (up to 42+ m), upper Lower Cambrian depositional sequence that is unconformably bounded by the lower Lower Cambrian (Random Formation) and the middle Middle Cambrian (Fossil Brook Member of the Chamberlain's Brook Formation). These stratigraphic relationships of the trilobite-bearing Hanford Brook Formation indicate deposition on the Avalonian marginal platform in the Saint John, New Brunswick, region and provide more evidence for a uniform, latest Precambrian–Cambrian epeirogenic history and cover sequence in Avalon. The Hanford Brook Formation is a deepening–shoaling sequence with (i) lower, transgressive sandstone deposited in episodically high-energy environments (St. Martins Member, new); (ii) highstand–regressive, dysaerobic mudstone – fine-grained sandstone with volcanic ashes (Somerset Street Member, new); and (iii) upper, regressive, planar and hummocky cross-stratified sandstone (Long Island Member, new). Trilobites are common in the distal Somerset Street Member, and ostracodes and brachiopods dominate the St. Martins and Long Island members. Condensation of the St. Martins Member and absence of the Long Island Member where the Random Formation and Fossil Brook Member are thinnest suggest onlap of the Hanford Brook and pronounced, sub-Middle Cambrian erosion across epeirogenically active blocks in southern New Brunswick.

1988 ◽  
Vol 25 (5) ◽  
pp. 669-690 ◽  
Author(s):  
Saifullah K. Tanoli ◽  
Ron K. Pickerill

The Cambrian – Lower Ordovician Saint John Group of the Saint John area, southern New Brunswick, has historically been subdivided into 11 formations. The existing scheme is inappropriate, however, as many of the supposed formations, particularly those of Middle Cambrian–Early Ordovician age, were distinguished on a biostratigraphic rather than lithostratigraphic basis. We suggest the sequence can be more appropriately subdivided into seven formations, each of which can be clearly and easily identified by the field geologist. Lower Cambrian formations comprise, from base to top, the Ratcliffe Brook, Glen Falls, and Hanford Brook formations, all of which are retained from the previous nomenclature. Middle Cambrian strata comprise the Forest Hills Formation (to replace the Fossil Brook and Porter Road formations) and Upper Cambrian strata the King Square Formation (to replace the Hastings Cove and Agnostus Cove formations) and Silver Falls Formation (to replace the Black Shale Brook and Narrows formations). Lower Ordovician strata are referred to as the Reversing Falls Formation (to replace the Navy Island and Suspension Bridge formations). Descriptions of each formation are given, major sections of each are included, and stratigraphic correlation of the sequence in different geographic areas is demonstrated.


2000 ◽  
Vol 74 (5) ◽  
pp. 858-878 ◽  
Author(s):  
Stephen R. Westrop ◽  
Ed Landing

The Hanford Brook Formation, one of the classic Cambrian units of Avalonian North America, contains at least eight species of endemic trilobites, including Berabichia milleri Westrop n. sp., that are assigned to seven genera. The vertical succession of faunas is far more complex than has been recognized previously, with each member containing a lithofacies-specific assemblage. These are, in ascending order: a bradoriid-linguloid Association without trilobites in the nearshore St. Martin's Member, a Protolenus Association in dysaerobic siltstones and sandstones of the Somerset Street Member, and a Kingaspidoides-Berabichia Association in hummocky cross-stratified sandstones of the Long Island Member that overlie a parasequence boundary at Hanford Brook. Due to the breakdown of biogeographic barriers in the late Early Cambrian, two new species-based zones, the Protolenus elegans and Kingaspidoides cf. obliquoculatus zones, share trilobite genera with the Tissafinian Stage of Morocco. This generic similarity has been the basis for correlation of this upper Lower Cambrian interval on the Avalon continent with the West Gondwanan lowest Middle Cambrian. However, the clear facies control on the occurrence of genera in the Hanford Brook Formation and the presence of an abrupt faunal break and unconformity at the base of the Tissafinian in Morocco makes this correlation questionable. The Hanford Brook Formation may represent a late Early Cambrian interval unknown in Gondwana. Sequence-stratigraphic criteria even raise the possibility that the Protolenus Association is the biofacies equivalent of Callavia broeggeri Zone faunas of the Brigus Formation of Newfoundland, Nova Scotia and Massachusetts.


1947 ◽  
Vol 20 (2) ◽  
pp. 278
Author(s):  
Peter Oliver ◽  
Robert F. Duncan ◽  
Fessenden S. Blanchard

2008 ◽  
Vol 82 (5) ◽  
pp. 884-905 ◽  
Author(s):  
Ed Landing ◽  
Susan C. Johnson ◽  
Gerd Geyer

The Cambrian inlier at Beaver Harbour, southern New Brunswick, is now confidently referred to the marginal platform of the late Proterozoic–Early Paleozoic Avalon microcontinent. The sub-trilobitic Lower Cambrian Chapel Island and Random Formations are unconformably overlain by the mafic volcanic-dominated Wade's Lane Formation (new). Late Early Cambrian trilobites and small shelly taxa in the lowest Wade's Lane demonstrate a long Random–Wade's Lane hiatus (middle Terreneuvian–early Branchian). Latest Early–middle Middle Cambrian pyroclastic volcanism produced a volcanic edifice at Beaver Harbour that is one of three known volcanic centers that extended 550 km along the northwest margin of Avalon. Middle Middle Cambrian sea-level rise, probably in theParadoxides eteminicusChron, mantled the extinct volcanics with gray-green mudstone and limestone of the Fossil Brook Member. Black, dysoxic mudstone of the upper Manuels River Formation (upper Middle Cambrian,P. davidisZone) is the youngest Cambrian unit in the Beaver Harbour inlier.Lapworthella cornu(Wiman, 1903) emend., a senior synonym of the genotypeL. nigra(Cobbold, 1921),Hyolithellus sinuosusCobbold, 1921, and probablyAcrothyra seraMatthew, 1902a, range through the ca. 8 m.y. of the trilobite-bearing upper Lower Cambrian, andH. sinuosusandA. serapersist into the middle Middle Cambrian.Lapworthella cornuandH. sinuosusreplaced the tropical taxaL. schodackensis(Lochman, 1956) andH. micansBillings, 1872, in cool-water Avalon.


2012 ◽  
Vol 86 (4) ◽  
pp. 569-583 ◽  
Author(s):  
Ronald L. Parsley

Three gogiid eocrinoids, numbering in the thousands of specimens, are well known from the lower Cambrian (Stage 4) Balang Formation (Guizhoueocrinus yui) and basal middle Cambrian (Stage 5) Kaili Formation (Kaili Biota) (Sinoeocrinus lui and Globoeocrinus globulus) that resided on the Yangtze-South China Plate (modern Guizhou Province, China). In each species a complete ontogenetic sequence, using thecal height (TH) as a scale, juvenile stage (early, middle, and late substages), mature stage (early, middle, and late substages), and a gerontic stage can be identified. Sutural pores appeared in an orderly sequence; below the ambulacrals, above the stalk and generally over the theca, in that order. In younger species their emplacement and growth was commonly precocious relative to G. yui. Also, their shape ranges from circular to oval to triangular in a single growth sequence, after the establishment of the 2-1-2 pattern; brachioles were added in series of five and were also precocious in time of occurrence in younger species. Thecae in younger species tend to retain juvenile aspects relative to G. yui. All of these species lived in outer shelf settings in fine-grained, organic-rich siliciclastics.


1969 ◽  
Vol 6 (3) ◽  
pp. 393-398 ◽  
Author(s):  
R. F. Cormier

The Coldbrook Group of southern New Brunswick is composed almost entirely of volcanic rocks and has been assigned a Precambrian age on the basis of field relationships. Rocks of the group are overlain by fossiliferous Lower Cambrian beds of the Saint John Group.Rubidium-strontium total-rock analyses of 46 samples of Coldbrook Group volcanic rocks have been carried out. Analysis of the data indicates the probable presence of two different isochron ages. One of these is apparently defined by those rocks in which the ratio 87Rb/86Sr is low, with values less than about 1.0. This isochron yields an age of 750 ± 80 million years, with an initial ratio 87Sr/86Sr of 0.7054 ± 0.0010. The other isochron is defined by rocks in which the value of the ratio 87Rb/86Sr is higher, with values greater than about 1.0. The age calculated from the second isochron is 370 ± 38 million years, with an indicated initial value for the ratio 87Sr/86Sr of 0.7135 ± 0.0010.The 750 million year age is interpreted to represent the time of extrusion of the Coldbrook volcanics. The 370 million year age appears to be secondary and related to metamorphism of the Coldbrook Group. This age is correlated with the Acadian orogeny, which strongly deformed this part of the northern Appalachians in Middle to Late Devonian time.


2002 ◽  
Vol 76 (5) ◽  
pp. 822-842 ◽  
Author(s):  
Dong Hee Kim ◽  
Stephen R. Westrop ◽  
Ed Landing

The Fossil Brook Member of the upper Chamberlain's Brook Formation is a thin (up to 14 m) but distinctive, unconformity-bound depositional sequence recognizable from Rhode Island to eastern Newfoundland in Avalonian North America. Its diverse trilobite fauna was first described more than century ago from the limestone-rich facies of the member in southern New Brunswick. However, the systematics, stratigraphic context, and biostratigraphic significance of these trilobites have remained poorly known. A revision of the conocoryphid and paradoxidid trilobites has been completed, and the taxa set into their stratigraphic context within the middle Middle Cambrian. The faunas of the Fossil Brook are assigned to the Eccaparadoxides eteminicus Zone of Avalon. Although biogeographic barriers between Avalon and Gondwana remained strong in the Middle Cambrian and few shared trilobite species are present, a generalized correlation of the E. eteminicus Zone into Gondwana is with the Badulesia tenera Zone of the Toushamian Stage in Morocco and the Badulesia Zone of the Caesaraugustian Stage in Spain.


1998 ◽  
Vol 35 (4) ◽  
pp. 329-338 ◽  
Author(s):  
Ed Landing ◽  
Samuel A Bowring ◽  
Kathleen L Davidek ◽  
Stephen R Westrop ◽  
Gerd Geyer ◽  
...  

Volcanic zircons from three ashes give a U-Pb date of 511 ± 1 Ma on trilobite-bearing, upper Lower Cambrian (upper Branchian Series) strata of southern New Brunswick that correlate into the Siberian middle Botomian - Toyonian Stage interval. This very young age on the late, but not latest, Early Cambrian of Avalon is consistent both with a 519 ± 1 Ma age on the older Caerfai Bay Shales of south Wales that are tentatively correlated into strata with the oldest Avalonian trilobites (lower Branchian) and with a 517 ± 1.5 Ma age on the Antatlasia gutta-pluviae Zone (trilobites) of Morocco. Determination of a 522 ± 2 Ma zircon age on the Moroccan subtrilobitic Lower Cambrian Lie de vin Formation is consistent with an earlier reported 521 ± 7 Ma age from the Lie de vin but suggests that a 526 ± 4 Ma age on Australian trilobite-bearing Lower Cambrian rocks may be too old. A 33+ Ma duration of the Avalonian Early Cambrian and an 8+ Ma length of the Avalonian trilobite-bearing Lower Cambrian support proposals that most Cambrian time was Early Cambrian and the majority of the Early Cambrian was pretrilobitic.


1996 ◽  
Vol 33 (8) ◽  
pp. 1185-1192 ◽  
Author(s):  
Ed Landing

A west to east, marginal to inner Avalonian platform transition, comparable to that in southeast Newfoundland and southern Britain, is present in the Cambrian of southern New Brunswick. The Saint John–Caton's Island–Hanford Brook area lay on the marginal platform, and its thick, uppermost Precambrian–lower Lower Cambrian is unconformably overlain by trilobite-bearing, upper Lower Cambrian. An inner platform remnant is preserved in the Cradle Brook outlier 60 km northeast of Saint John. In contrast to the marginal platform sequences, the Cradle Brook outlier has a very thin lower Lower Cambrian and has middle Lower Cambrian strata (Bonavista Group) not present on the marginal platform. The Cradle Brook Lower Cambrian closely resembles inner platform successions in eastern Massachusetts and Trinity and Placentia bays, southeast Newfoundland. A limestone with Camenella baltica Zone fossils on Cradle Brook seems to be the peritidal limestone cap of the subtrilobitic Lower Cambrian known in Avalonian North America (Fosters Point Formation) and England (Home Farm Member).


Sign in / Sign up

Export Citation Format

Share Document