Ontogeny, functional morphology, and comparative morphology of lower (Stage 4) and basal middle (Stage 5) Cambrian gogiids, Guizhou Province, China

2012 ◽  
Vol 86 (4) ◽  
pp. 569-583 ◽  
Author(s):  
Ronald L. Parsley

Three gogiid eocrinoids, numbering in the thousands of specimens, are well known from the lower Cambrian (Stage 4) Balang Formation (Guizhoueocrinus yui) and basal middle Cambrian (Stage 5) Kaili Formation (Kaili Biota) (Sinoeocrinus lui and Globoeocrinus globulus) that resided on the Yangtze-South China Plate (modern Guizhou Province, China). In each species a complete ontogenetic sequence, using thecal height (TH) as a scale, juvenile stage (early, middle, and late substages), mature stage (early, middle, and late substages), and a gerontic stage can be identified. Sutural pores appeared in an orderly sequence; below the ambulacrals, above the stalk and generally over the theca, in that order. In younger species their emplacement and growth was commonly precocious relative to G. yui. Also, their shape ranges from circular to oval to triangular in a single growth sequence, after the establishment of the 2-1-2 pattern; brachioles were added in series of five and were also precocious in time of occurrence in younger species. Thecae in younger species tend to retain juvenile aspects relative to G. yui. All of these species lived in outer shelf settings in fine-grained, organic-rich siliciclastics.

2017 ◽  
Vol 92 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Bing Pan ◽  
Timothy P. Topper ◽  
Christian B. Skovsted ◽  
Lanyun Miao ◽  
Guoxiang Li

AbstractDisarticulated net-like plates of the lobopodMicrodictyonhad a near cosmopolitan distribution from the early to middle Cambrian but are yet to be documented from the North China Platform. Here we report isolated plates ofMicrodictyonfrom the lower Cambrian Xinji Formation (Stage 4, Series 2) of the North China Platform, extending the paleogeographic distribution ofMicrodictyonin the early Cambrian. The plates ofMicrodictyonfrom the Xinji Formation are similar to those of other species established on the basis of isolated plates but do bear some new characters, such as mushroom-shaped nodes with a single inclined platform-like apex and an upper surface that displays radial lines. However, the plates documented here are left under open nomenclature due to inadequate knowledge of intraspecific and ontogenetic variation and low specimen numbers. Through comparison of the node shapes of the isolated plates of differentMicrodictyonspecies, we consider that low mushroom-shaped nodes could be a primitive and conservative character ofMicrodictyonwhile tall mushroom-shaped nodes may be a derived character. Subtle differences in shape and number of node apices may also represent intraspecific or ontogenetic variation.


1996 ◽  
Vol 33 (3) ◽  
pp. 404-417 ◽  
Author(s):  
Ed Landing ◽  
Stephen R. Westrop

The Hanford Brook Formation (emended) is a thin (up to 42+ m), upper Lower Cambrian depositional sequence that is unconformably bounded by the lower Lower Cambrian (Random Formation) and the middle Middle Cambrian (Fossil Brook Member of the Chamberlain's Brook Formation). These stratigraphic relationships of the trilobite-bearing Hanford Brook Formation indicate deposition on the Avalonian marginal platform in the Saint John, New Brunswick, region and provide more evidence for a uniform, latest Precambrian–Cambrian epeirogenic history and cover sequence in Avalon. The Hanford Brook Formation is a deepening–shoaling sequence with (i) lower, transgressive sandstone deposited in episodically high-energy environments (St. Martins Member, new); (ii) highstand–regressive, dysaerobic mudstone – fine-grained sandstone with volcanic ashes (Somerset Street Member, new); and (iii) upper, regressive, planar and hummocky cross-stratified sandstone (Long Island Member, new). Trilobites are common in the distal Somerset Street Member, and ostracodes and brachiopods dominate the St. Martins and Long Island members. Condensation of the St. Martins Member and absence of the Long Island Member where the Random Formation and Fossil Brook Member are thinnest suggest onlap of the Hanford Brook and pronounced, sub-Middle Cambrian erosion across epeirogenically active blocks in southern New Brunswick.


1988 ◽  
Vol 62 (2) ◽  
pp. 218-233 ◽  
Author(s):  
John Mark Malinky

Concepts of the family Hyolithidae Nicholson fide Fisher and the genera Hyolithes Eichwald and Orthotheca Novak have been expanded through time to encompass a variety of morphologically dissimilar shells. The Hyolithidae is here considered to include only those hyolithid species which have a rounded (convex) dorsum; slopes on the dorsum are inflated, and the venter may be flat or slightly inflated. Hyolithes encompasses species which possess a low dorsum and a prominent longitudinal sulcus along each edge of the dorsum; the ligula is short and the apertural rim is flared. The emended concept of Orthotheca includes only those species of orthothecid hyoliths which have a subtriangular transverse outline and longitudinal lirae covering the shell on both dorsum and venter.Eighteen species of Hyolithes and one species of Orthotheca from the Appalachian region and Western Interior were reexamined in light of more modern taxonomic concepts and standards of quality for type material. Reexamination of type specimens of H. similis Walcott from the Lower Cambrian of Newfoundland, H. whitei Resser from the Lower Cambrian of Nevada, H. billingsi Walcott from the Lower Cambrian of Nevada, H. gallatinensis Resser from the Upper Cambrian of Wyoming, and H. partitus Resser from the Middle Cambrian of Alabama indicates that none of these species represents Hyolithes. Hyolithes similis is here included under the new genus Similotheca, in the new family Similothecidae. Hyolithes whitei is designated as the type species of the new genus Nevadotheca, to which H. billingsi may also belong. Hyolithes gallatinensis is referred to Burithes Missarzhevsky with question, and H. partitus may represent Joachimilites Marek. The type or types of H. attenuatus Walcott, H. cecrops Walcott, H. comptus Howell, H. cowanensis Resser, H. curticei Resser, H. idahoensis Resser, H. prolixus Resser, H. resseri Howell, H. shaleri Walcott, H. terranovicus Walcott, and H. wanneri Resser and Howell lack shells and/or other taxonomically important features such as a complete aperture, rendering the diagnoses of these species incomplete. Their names should only be used for the type specimens until better preserved topotypes become available for study. Morphology of the types of H.? corrugatus Walcott and “Orthotheca” sola Resser does not support placement in the Hyolitha; the affinities of these species are uncertain.


1995 ◽  
Vol 347 (1321) ◽  
pp. 305-358 ◽  

Articulated halkieriids of Halkieria evangelista sp. nov. are described from the Sirius Passet fauna in the Lower Cambrian Buen Formation of Peary Land, North Greenland. Three zones of sclerites are recognizable: obliquely inclined rows of dorsal palmates, quincuncially inserted lateral cultrates and imbricated bundles of ventro-lateral siculates. In addition there is a prominent shell at both ends, each with radial ornamentation. Both sclerites and shells were probably calcareous, but increase in body size led to insertion of additional sclerites but marginal accretion of the shells. The ventral sole was soft and, in life, presumably muscular. Recognizable features of internal anatomy include a gut trace and possible musculature, inferred from imprints on the interior of the anterior shell. Halkieriids are closely related to the Middle Cambrian Wixaxia , best known from the Burgess Shale: this clade appears to have played an important role in early protostome evolution. From an animal fairly closely related to Wixaxia arose the polychaete annelids; the bundles of siculate sclerites prefigure the neurochaetae whereas the dorsal notochaetae derive from the palmates. Wixaxia appears to have a relic shell and a similar structure in the sternaspid polychaetes may be an evolutionary remnant. The primitive state in extant polychaetes is best expressed in groups such as chrysopetalids, aphroditaceans and amphinomids. The homology between polychaete chaetae and the mantle setae of brachiopods is one line of evidence to suggest that the latter phylum arose from a juvenile halkieriid in which the posterior shell was first in juxtaposition to the anterior and rotated beneath it to provide the bivalved condition of an ancestral brachiopod. H. evangelista sp. nov. has shells which resemble those of a brachiopod; in particular the posterior one. From predecessors of the halkieriids known as siphogonuchitids it is possible that both chitons (polyplacophorans) and conchiferan molluscs arose. The hypothesis of halkieriids and their relatives having a key role in annelid—brachiopod—mollusc evolution is in accord with some earlier proposals and recent evidence from molecular biology. It casts doubt, however, on a number of favoured concepts including the primitive annelid being oligochaetoid and a burrower, the brachiopods being deuterostomes and the coelom being an archaic feature of metazoans. Rather, the annelid coelom arose as a functional consequence of the transition from a creeping halkieriid to a polychaete with stepping parapodial locomotion.


2018 ◽  
Vol 6 (4) ◽  
pp. T819-T833 ◽  
Author(s):  
Yang Gu ◽  
Wenlong Ding ◽  
Min Yin ◽  
Ruyue Wang ◽  
Baocheng Jiao ◽  
...  

The marine shale in South China has great gas exploration potential, and exploration in the Sichuan Basin has been successful, but the degree of exploration remains low in the Guizhou Province. We used organic geochemical analyses (total organic carbon content and kerogen type), scanning electron microscopy (SEM), field emission SEM, nuclear magnetic resonance (NMR), X-ray diffraction analysis, and low-temperature [Formula: see text] and [Formula: see text] adsorption experimental methods to study the micropore types and pore structures and their effects on the methane adsorption capacity of organic-rich shales found in the Fenggang block in northern Guizhou Province. The results indicate that the microscopic surface porosity of the lower Cambrian Niutitang Formation ranges from 2.88% to 5.34%, with an average value of 3.86%. Based on nitrogen adsorption methods, the range of the average pore size distribution is 4.6–9.491 nm, with an average value of 6.68 nm. All of the samples exhibit significant unimodal distributions. The main pore size is less than 10 nm, and these pores account for most of the mesopore volume, which is generally consistent with the NMR results. The methane adsorption capacity of the shale samples gradually increases in the range of 0–8 MPa at 30°C and reaches a maximum at approximately 10 MPa. Positive correlations were found between the gas content and specific surface area, total pore volume, and micropore volume. These strong correlations indicate that the Niutitang Shale has a high specific surface area, a high pore volume, and narrow-diameter pores, demonstrating that it has a high gas adsorption capacity. The results of this study provide valuable information regarding the adsorption characteristics of marine shales and the factors that affect those characteristics.


Sign in / Sign up

Export Citation Format

Share Document