Evolution of the Paleoproterozoic Snow Lake arc assemblage and geodynamic setting for associated volcanic-hosted massive sulphide deposits, Flin Flon Belt, Manitoba, Canada

1999 ◽  
Vol 36 (11) ◽  
pp. 1789-1805 ◽  
Author(s):  
Alan H Bailes ◽  
Alan G Galley

The majority of volcanogenic massive sulphide (VMS) deposits at the east end of the Paleoproterozoic Flin Flon "greenstone" belt occur in the 1.89 Ga Snow Lake arc assemblage. VMS deposits in this isotopically juvenile oceanic arc sequence are hosted within a 6 km thick monoclinal section that records in its stratigraphy and geochemistry a temporal evolution in arc development from primitive, through mature, to arc rift. VMS deposits occur in both the primitive and mature arc sequences and are interpreted to be products of arc extension and accompanying anomolously high heat flow, fracturing, and fluid circulation. Boninites, low-Ti tholeiites, and isotopically juvenile rhyolite flows, a rock association that has been attributed in both modern and Phanerozoic arcs to high-temperature hydrous melting of refractory mantle sources in an extensional and (or) proto-arc environment, forms the primitive arc. Indication that the mature arc also underwent extension includes voluminous volcaniclastic detritus (from fault scarps?), prominent synvolcanic dykes, isotopically juvenile rhyolite flows, and the fact that the mature arc is stratigraphically overlain by arc-rift basalts with MORB-like geochemistry. Interpretation of VMS deposits at Snow Lake as products of an extensional geodynamic setting suggests that the traditional Flin Flon Belt exploration model, invoking "pluton-generated" convective seawater, be augmented by the search for evidence of rifting. Economically significant rock associations at Snow Lake include geochemically primitive refractory mafic magmas (e.g., boninites), isotopically juvenile felsic magmas, bimodal basalt-rhyolite sequences, and arc-rift basalts.

1999 ◽  
Vol 36 (11) ◽  
pp. 1767-1788 ◽  
Author(s):  
E C Syme ◽  
S B Lucas ◽  
A H Bailes ◽  
R A Stern

The Flin Flon Belt (Trans-Hudson Orogen, Manitoba and Saskatchewan) is the largest Paleoproterozoic volcanic-hosted massive sulphide (VMS) district in the world, with 118.7 million tonnes (Mt) of Zn-Cu-(Au-Ag) sulphide ore in 25 past or presently producing mines and 64.3 Mt in subeconomic deposits. The orebodies are restricted to isotopically juvenile volcanic-arc sequences, dated at 1.903-1.881 Ga at Flin Flon. Sequences of ca. 1.904-1.901 Ga back-arc and ocean-plateau basalts and related plutonic rocks, structurally juxtaposed with the arc assemblages at 1.880-1.870 Ga, are not known to contain economic base metal deposits. The juvenile arc tectono-stratigraphic assemblages are generally marked by older and stratigraphically lower tholeiitic submarine volcanic packages (ca. 1.903-1.886 Ga) that are observed or interpreted to be overlain by extensive and lithologically varied sequences of calc-alkaline and alkaline (shoshonitic) arc rocks and arc rift deposits (ca. 1.888-1.881 Ga). VMS deposits occur in both the tholeiitic and calc-alkaline arc sequences, but the 62 Mt Flin Flon deposit occurs in a 1.903 Ga tholeiitic primitive arc package. It can be demonstrated that for the Flin Flon - Callinan - Triple 7, Cuprus, and White Lake VMS deposits, whose stratigraphic context is preserved, deposition of the massive sulphides was temporally associated with inferred arc rifting processes. Critical observations for arc rifting include evidence for extensional faulting, erosion, and development of unconformities; extrusion of MORB-like basalts and associated rhyolites; and development of depositional basins with thick sequences of shoshonitic turbidites. As has been proposed for other major VMS camps (e.g., Kuroko, Kidd Creek, Bathurst), arc rifting can generate the loci of sustained high heat flow and fluid pathways required for the development of long-lived hydrothermal convection systems.


2009 ◽  
Vol 46 (7) ◽  
pp. 481-508 ◽  
Author(s):  
Y. M. DeWolfe ◽  
H. L. Gibson ◽  
B. Lafrance ◽  
A. H. Bailes

The hanging wall to the Flin Flon, Callinan, and Triple 7 volcanogenic massive sulphide deposits of the Flin Flon district is composed of the Hidden and Louis formations. The contact between these formations is marked by mafic tuff that represents a hiatus in effusive volcanism. The formations form a composite volcanic edifice that was erupted and grew within a large, volcanic–tectonic subsidence structure (hosting the deposits) that developed within a rifted-arc environment. The formations are evidence of resurgent effusive volcanism and subsidence following a hiatus in volcanism marked by ore formation since they consist of dominantly basaltic flows, sills, and volcaniclastic rocks with subordinate basaltic andesite and rhyodacitic flows and volcaniclastic rocks. The Hidden formation is interpreted to represent a small shield volcano and the Louis formation a separate shield volcano that developed on its flank. Both the Hidden and Louis volcanic edifices were constructed by continuous, low-volume eruptions of pillow lava. A gradual change from a dominantly extensional environment during the formation of the footwall Flin Flon formation to a progressively more dominant convergent environment during the emplacement of the hanging wall suggests that the Hidden and Louis formations are unlikely to host significant volcanogenic massive sulphide-type mineralization. However, synvolcanic structures in the formations define structural corridors that project downwards into the footwall where they encompass massive sulphide mineralization, indicating their control on ore formation, longevity,and reactivation as magma and fluid pathways during the growth of the Hidden and Louis volcanoes.


2009 ◽  
Vol 46 (7) ◽  
pp. 509-527 ◽  
Author(s):  
Y. M. DeWolfe ◽  
H. L. Gibson ◽  
S. J. Piercey

A detailed study of the geochemical and isotopic characteristics of the volcanic rocks of the Hidden and Louis formations, which make up the hanging wall to the volcanogenic massive sulphide deposits at Flin Flon, Manitoba, was carried out on a stratigraphically controlled set of samples. The stratigraphy consists of the lowermost, dominantly basaltic, Hidden formation, and the overlying, dominantly basaltic, Louis formation. Of importance petrogenetically, is the 1920 unit a basaltic andesite with Nb/Thmn = 0.54–0.62, εNd(1.9Ga) = +3.6–+5.9, εHf(1.9Ga) = +8.5–+9.6, and 204Pb/206Pb = 23.9. The basaltic flows that dominate the Hidden formation have Nb/Thmn = 0.16–0.29, εNd(1.9Ga) = +1.7–+4.4, εHf(1.9Ga) = +7.0–+11.8 and 204Pb/206Pb = 16.9–18.6). The Carlisle Lake basaltic–andesite (top of Hidden formation) is characterized by Nb/Thmn = 0.16–0.14, and 204Pb/206Pb = 21.4. The rhyodacitic Tower member (bottom of Louis formation) has Nb/Thmn = 0.23, εNd1.9Ga = +4.6, εHf1.9Ga = +9.3, and 204Pb/206Pb = 22.2. The basaltic flows that dominate the Louis formation have Nb/Thmn = 0.18–0.25, εNd(1.9Ga) = +3.6–+4.2, εHf(1.9Ga) = +8.4–+11.3 and 204Pb/206Pb = 17.9. The Hidden and Louis formations show dominantly transitional arc tholeiite signatures, with the 1920 unit having arc tholeiite characteristics. It is interpreted to have formed through extensive fractional crystallization of differentiated magmas at shallow levels in oceanic crust. Given the geological, geochemical, and isotopic characteristics of the Hidden and Louis formations, they are interpreted to represent subducted slab metasomatism with minor contamination from subducted sediments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatsuo Nozaki ◽  
◽  
Toshiro Nagase ◽  
Yutaro Takaya ◽  
Toru Yamasaki ◽  
...  

AbstractSeafloor massive sulphide (SMS) deposits, modern analogues of volcanogenic massive sulphide (VMS) deposits on land, represent future resources of base and precious metals. Studies of VMS deposits have proposed two emplacement mechanisms for SMS deposits: exhalative deposition on the seafloor and mineral and void space replacement beneath the seafloor. The details of the latter mechanism are poorly characterised in detail, despite its potentially significant role in global metal cycling throughout Earth’s history, because in-situ studies require costly drilling campaigns to sample SMS deposits. Here, we interpret petrographic, geochemical and geophysical data from drill holes in a modern SMS deposit and demonstrate that it formed via subseafloor replacement of pumice. Samples from the sulphide body and overlying sediment at the Hakurei Site, Izena Hole, middle Okinawa Trough indicate that sulphides initially formed as aggregates of framboidal pyrite and matured into colloform and euhedral pyrite, which were replaced by chalcopyrite, sphalerite and galena. The initial framboidal pyrite is closely associated with altered material derived from pumice, and alternating layers of pumiceous and hemipelagic sediments functioned as a factory of sulphide mineralisation. We infer that anhydrite-rich layers within the hemipelagic sediment forced hydrothermal fluids to flow laterally, controlling precipitation of a sulphide body extending hundreds of meters.


2014 ◽  
Vol 41 (3) ◽  
pp. 365 ◽  
Author(s):  
Pierre-Simon Ross ◽  
Patrick Mercier-Langevin

Volcanogenic massive sulphide (VMS) deposits and seafloor massive sulphide (SMS) deposits have a spatial and genetic connection with contemporaneous volcanism. The control exerted by the volcanic succession (e.g. rock type, architecture and facies) on the nature and style of the ore and alteration (e.g. subsea-floor replacement vs. exhalative, or discordant vs. conformable) is significant, making it imperative to understand the local volcanology in developing better genetic and exploration models. Three VMS deposit groupings collectively represent a high proportion of cases: (1) deposits associated with complexes of submarine felsic domes, cryptodomes, lobe-hyaloclastite flows and/or blocky lavas, and their reworked equivalents; (2) deposits associated with thick piles of pumiceous felsic pyroclastic rocks, suggesting a caldera context; and (3) deposits associated with mafic volcanic footwalls and/or with sedimentary hosts, including significant deposits such as Windy Craggy (~300 Mt) in British Columbia. With regard to number (2) above, demonstrating the presence of a caldera in ancient successions can be difficult because silicic calderas tend to be large and exceed the limits of deposit-scale investigations. Furthermore, there is no consensus regarding what a large submarine caldera should look like, i.e., no accepted facies model exists showing the distribution of rock types. But without thick piles of pumiceous felsic pyroclastic deposits, arguing for a large submarine caldera is a challenge.SOMMAIRELes gisements de sulfures massifs volcanogènes (SMV) et leurs équivalents actuels au fonds des mers ont une connexion spatiale et génétique avec le volcanisme. La succession volcanique – composition, architecture, faciès – exerce un contrôle important sur la nature et le style de minéralisation et d’altération hydrothermale (p. ex. minéralisation mise en place par remplacement sous le fond marin vs. exhalative; altération discordante ou plus concordante). Il est donc impératif de connaître la volcanologie des roches encaissantes pour développer de meilleurs modèles génétiques et d’exploration. Trois groupes de gisements couvrant collectivement une grande proportion des cas sont discutés ici. Premièrement, plusieurs gisements sont associés à des complexes de dômes felsiques sous-marins, des cryptodômes, des coulées de type lobes-hyaloclastite et/ou des laves en blocs, ou leur équivalents resédimentés. Deuxièmement, certains gisements sont associés à d’épaisses séquences de roches pyroclastiques felsiques ponceuses, suggérant un contexte de caldeira. Troisièmement, plusieurs gisements sont associés avec des roches volcaniques mafiques et/ou avec des roches sédimentaires, par exemple l’important dépôt de Windy Craggy (~300 Mt) en Colombie-Britannique. Concernant les contextes de type 2, la démonstration d’une caldeira peut être difficile dans les successions anciennes, car les caldeiras felsiques sont de grandes dimensions, excédant les limites des études à l’échelle du gîte. De plus, il n’existe pas de consensus sur un modèle de faciès pour une grande caldeira sous-marine. Mais sans la présence d’épais empilements de roches pyroclastiques felsiques ponceuses, il est difficile d’argumenter en faveur d’une caldeira sous-marine.


2016 ◽  
Vol 53 (4) ◽  
pp. 387-425 ◽  
Author(s):  
Stefanie Lode ◽  
Stephen J. Piercey ◽  
Gerald C. Squires

The Cambrian Tally Pond volcanic belt in central Newfoundland contains numerous volcanogenic massive sulphide (VMS) deposits and prospects associated with exhalative metalliferous mudstones. Deposits in the belt are bimodal felsic VMS deposits that are both base metal bearing (e.g., Duck Pond – Boundary), and base metal and precious metal bearing (Lemarchant). At the Lemarchant deposit, metalliferous mudstones are stratigraphically and genetically associated with mineralization. In the remainder of the Tally Pond belt, detrital shales occur predominantly in the northeastern part of the belt (mostly as unrelated mid-Ordovician structural blocks) in the upper sections of the Cambrian volcanic stratigraphy, but locally also are intercalated with metalliferous mudstones. Their relationships to massive sulphides are less obvious, with many spatially, but not necessarily genetically, related to mineralization. Upper Cambrian to Lower Ordovician black shales from Bell Island, which represent pelagic sedimentation not associated with hydrothermal activity and volcanism, are compared with the Tally Pond belt mudstones and shales. Exhalative mudstones, like those at Lemarchant, have elevated Fe/Al and base-metal values, and have shale-normalized negative Ce and positive Eu anomalies, indicative of deposition from high-temperature (>250 °C) hydrothermal fluids within an oxygenated water column. Mudstones and shales sampled from other Tally Pond prospects have more variable signatures, ranging from hydrothermal to nonhydrothermal black shales (no positive Eu anomalies, flat rare earth element patterns, low Fe/Al and base-metal contents), to those that have mixed signatures. Accordingly, mudstones from areas with a Lemarchant-like hydrothermal and vent-proximal character are more attractive exploration targets than mudstones and shales with predominantly detrital signatures.


2015 ◽  
Vol 63 (4) ◽  
pp. 849-860 ◽  
Author(s):  
D.M. Melanson ◽  
D.J. White ◽  
C. Samson ◽  
G. Bellefleur ◽  
E. Schetselaar ◽  
...  

1999 ◽  
Vol 36 (11) ◽  
pp. 1901-1915 ◽  
Author(s):  
D F Gale ◽  
S B Lucas ◽  
J M Dixon

The structure of the Flin Flon area (Manitoba and Saskatchewan) has been examined through mapping of mesoscopic and macroscopic structures in both the ca. 1900 Ma Flin Flon arc assemblage volcanic basement and the unconformably overlying (or fault juxtaposed) ca. 1845 Ma Missi Group continental sedimentary cover sequence. The Flin Flon and Callinan volcanogenic massive sulphide orebodies occur within the basalt-dominated basement. The contact between the basement and the cover rocks was investigated in detail during this study. The cover sequence records three principal fold- and foliation-forming events. All deformation observed within the cover sequence is correlative with deformation observed within the volcanic basement. Significant low-angle overlap of basement on cover is attributed to development of a D1 north-verging nappe and subsequent thrust displacement on the overturned basement-cover contact. North-verging D1 structures provide evidence for a distinct post-Missi Group deformation event that preceded regional, southwestward D2 thrusting at peak metamorphic conditions across the southeastern Trans-Hudson Orogen. D2 deformation produced closed to tight, west-verging overturned folds with a well-developed axial planar cleavage and a pervasive extension lineation. D3 deformation generated open folds of the S2 and a weakly to moderately developed spaced axial planar S3 cleavage. D3 and D4 deformations produced sinistral-oblique, brittle-ductile reverse faults that offset all older features.


2020 ◽  
Vol 57 (1) ◽  
pp. 133-166
Author(s):  
Marie-Ève Lajoie ◽  
Stephen J. Piercey ◽  
James Conliffe ◽  
Daniel Layton-Matthews

Barite in the approximately 513 Ma Lemarchant volcanogenic massive sulphide (VMS) deposit, Newfoundland, consists of granular and bladed barite intimately associated with mineralization. Regardless of type, the composition of barite is homogeneous at bulk rock and mineral scale containing predominantly Ba, S, and Sr, with minor Ca and Na. The barite has homogeneous sulphur isotope compositions (δ34Smean = 27‰), similar to Cambrian seawater sulphate (25–35‰) and Sr isotope compositions (87Sr/86Sr = 0.706905 to 0.707485). These results are consistent with barite having formed from fluid–fluid mixing between Cambrian seawater and VMS-related hydrothermal fluids. The 87Sr/86Sr values in the barite are lower than mid-Cambrian seawater, which suggests that some of the Sr was derived from the underlying Neoproterozoic basement. Fluid inclusions in bladed barite are low-salinity, CO2-rich inclusions with homogenization temperatures between 245°–250 °C, and average salinity of 1.2 wt.% NaCl equivalent. Estimated minimum trapping pressures of between 1.7 to 2.0 kbars were calculated from aqueous–carbonic fluid inclusion assemblages. The fluid inclusion results reflect regional metamorphic reequilibration during younger Silurian regional metamorphism, rather than primary fluid signatures, despite the preservation of primary barite and fluid inclusion textures. These results illustrate that barite in VMS deposits records the physicochemical processes associated with VMS formation and the sources of fluids in ancient VMS deposits, as well as seawater sulphate and basement isotopic compositions. The results herein are not only relevant for the Lemarchant deposit but also for other barite-rich VMS deposits globally.


Sign in / Sign up

Export Citation Format

Share Document