mineral scale
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 46)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Irma Kusumawati ◽  
Samuel Edward Bremner ◽  
Neil McIntosh ◽  
Ingrid Rajkovic ◽  
Tanja Nylend

Abstract The incorporation of a sulfate removal system onto a stimulation vessel has been shown to positively affect vessel utilization, increase efficiency in field development, and reduce freshwater consumption. Stimulation vessels have fixed storage and transportation volumes as well as a fixed total mass that can be loaded. Fresh water occupies the highest proportion of space and mass in most stimulation treatments, which imposes limitations on all other products that can be loaded out. Particularly for acid stimulation treatments, a compromise between the volumes of raw acid and fresh water must be made in order to achieve the best operational efficiency possible. Any method that can reduce, eliminate, or replace fresh water as a component in stimulation fluids will have a significant impact on vessel efficiency. One option is the use of seawater as the base fluid. However, seawater can cause problems for well production due to the high sulfate content in the water leading to the formation of mineral scale. The solution to this problem has been the installation of a sulfate removal system on the stimulation vessel. Driven by membrane nanofiltration, this system can produce up to 100 m3/hr of low sulfate water from seawater for well stimulation operations. By removing the scaling risk from seawater, this system enables the stimulation vessel to maximize the products it loads with the ability to produce low sulfate water as and when it is needed. The sulfate removal system can reduce SO4 content to 4.3 mg/l and reduce other ions present in seawater. With an output of 100 m3/hr and being installed independently from stimulation systems, the unit is able to produce water regardless of ongoing activities. In stimulation jobs, multistage ball drop operations are the most time-critical operations. In the analysis of hundreds of stages stimulated with water from the new nanofiltration system, the average stage completion time was 6 hours, which included ball loading, dropping, and displacement; diagnostic injection testing; and the main treatment. With an average water requirement of 600 m3, the vessel can keep up with water demand and remove water capacity from the utilization equation. The use of a compact nanofiltration system for SO4 removal has improved stimulation vessel operations where scale production is a key concern for operators. In addition to increasing vessel utilization and intervention efficiency, the system will lead to the elimination of approximately 68,000 m3 of fresh water being pumped every year for stimulation operations in the North Sea.


2021 ◽  
Vol 931 (1) ◽  
pp. 012004
Author(s):  
B N Driker ◽  
A A Protazanov ◽  
N V Tsirulnikova

Abstract The issue of mineral scale formation in pipelines and technological equipment and metal corrosion of continues to be relevant for industrial plants, including oil-producing and oilrefining industries. The simplest and most available way to solve these problems is to use organophosphonates (OP) and low-molecular-weight polymers (MM<1000) as inhibitors. Complexonates with alkaline-earth metals (Me) have been synthesized on basis of mentioned above acids at different molar ratios OP:Me = 4:1 – 1:1 and temperature of 20 °C. Compositions containing synthesized complexonates were used for water of various degrees of mineralization and temperature range of 60-90 °C under dynamic conditions. It was found that the efficiency of inhibition of mineral scale formation for all the studied compositions of complexonates increase with the growth of number of functional groups in the OP molecule, regardless of the molar ratio of OP:Me. The corrosion inhibition both depends on the number of functional groups in the OP molecule and is determined by the formation of a protective film on the metal surface largely.


2021 ◽  
Author(s):  
Yue Zhao ◽  
Zhaoyi Joey Dai ◽  
Chong Dai ◽  
Samridhdi Paudyal ◽  
Xin Wang ◽  
...  

Abstract Mineral scale formation has always been a serious problem during production. Most scales can be treated by adding threshold scale inhibitors. Several crystallization and inhibition models have previously been reported to predict the minimum inhibitor concentration (MIC) needed to control the barite and calcite scale. Recently, more attentions have been paid to the formation of celestite scale in the oilfield. However, no related models have been developed to help determine the MIC needed for the celestite scale control. Therefore, in this study, the crystallization and inhibition kinetics data of celestite under a wide range of celestite saturation index (SI = 0.7 – 2.6), temperature (T = 25 – 90 °C), ionic strength (IS = 1.075 – 3.075 M) and pH (4 – 6.7) with one phosphonate inhibitor (diethylenetriamine penta(methylene phosphonic acid, DTPMP) and two polymeric inhibitors (phophinopolycarboxylate, PPCA and polyvinyl sulfonate, PVS) were measured by laser apparatus or collected from previous studies. Then, based on the results, the celestite crystallization and inhibition models were established accordingly. Good agreements between the experimental results and calculated results from the models can be found. By using these newly developed models, the MIC needed for three commonly seen inhibitors, DTPMP, PPCA and PVS on celestite scale control can be predicted under extensive production conditions. The developed models can fill in the blank in scaling management strategies for high Sr2+ and SO42- concentrations in the produced waters.


2021 ◽  
Author(s):  
Zhaoyi Joey Dai ◽  
Amy Kan ◽  
Yi-Tsung Alex Lu ◽  
Cianna Leschied ◽  
Yue Zhao ◽  
...  

Abstract Mineral scale formation causes billions of dollars’ loss every year due to production losses and facility damages in the oil and gas industry. Accurate predictions of when, where, how much, and how fast scale will deposit in the production system and how much scale inhibitor is needed are critical for scale management. Unfortunately, there is not a sophisticated scale deposition model available, potentially due to the challenges below. First, an accurate thermodynamic model is not widely available to predict scale potential at extensive ranges of temperature, pressure, and brine compositions occurring in the oilfield. Second, due to the complex oilfield operation conditions with large variations of water, oil and gas flow rates, tubing size, surface roughness, etc., wide ranges of flow patterns and regimes can occur in the field and need to be covered in the deposition model. Third, how scale inhibitors impact the mineral deposition process is not fully understood. The objective of this study is to overcome these challenges and develop a model to predict mineral deposition at different flow conditions with or without scale inhibitors. Specifically, after decades of efforts, our group has developed one of the most accurate and widely used thermodynamic model, which was adopted in this new deposition model to predict scale potential up to 250 °C, 1,500 bars, and 6 mol/kg H2O ionic strength. In addition, the mass transfer coefficients were simulated from laminar (Re &lt; 2300) to turbulent (Re &gt; 3,100) flow regimes, as well as the transitional flow regimes (2300 &lt; Re &lt; 3,100) which occur occasionally in the oilfield using sophisticated flow dynamics models. More importantly, the new deposition model also incorporates the impacts of scale inhibitors on scale deposition which was tested and quantified with Langmuir-type kink site adsorption isotherm. The minimum inhibitor dosage required can be predicted at required protection time or maximum deposition thickness rate. This model also includes the impacts of entry-region flow regime in laminar flow, surface roughness, and laminar sublayer stability under turbulent flow. The new mineral scale deposition model was validated by our laminar tubing flow deposition experiments for barite and calcite with or without scale inhibitors and laminar-to-turbulent flow experiments in literature. The good match between experimental result and model predictions show the validity of our new model. This new mineral scale deposition model is the first sophisticated model available in the oil and gas industry that can predict mineral scale deposition in the complex oilfield conditions with and without scale inhibitors. This new mineral scale deposition model will be a useful and practical tool for oilfield scale control.


2021 ◽  
Author(s):  
Jonathan J. Wylde ◽  
Alexander R. Thornton ◽  
Mark Gough ◽  
Rifky Akbar ◽  
William A. Bruckmann

Abstract A prolific Southeast Asia onshore oilfield has enjoyed scale free production for many years before recently experiencing a series of unexpected and harsh calcite scaling events. Well watercuts were barely measurable, yet mineral scale deposits accumulated quickly across topside wellhead chokes and within downstream flowlines. This paper describes the scale management experience, and the specific challenges presented by this extraordinarily low well water cut, low pH, calcium carbonate scaling environment. To the knowledge of the authors, no previous literature works have been published regarding such an unusual and aggressive mineral scale control scenario. A detailed analysis of the scaling experience is provided, including plant layout, scaling locations, scale surveillance and monitoring programs, laboratory testing, product selection and implementation, and scale inhibitor efficacy surveillance and monitoring programs. The surveillance and application techniques themselves are notable, and feature important lessons learned for addressing similar very low water cut and moderate pH calcium carbonate scaling scenarios. For example, under ultra-low watercut high temperature well production conditions, it was found that a heavily diluted scale inhibitor was necessary to achieve optimum scale control, and a detailed laboratory and field implementation process is described that led to this key learning lesson. The sudden and immediate nature of the occurrence demanded a fast-track laboratory testing approach to rapidly identify a suitable scale inhibitor for the high temperature topside calcium carbonate scaling scenario. The streamlined selection program is detailed, however what could not be readily tested for via conventional laboratory testing was the effect of &lt;1% water cut, and how the product would perform in that environment. A risk-managed field surveillance program was initiated to determine field efficiency of the identified polymeric scale inhibitor and involved field-trialing on a single well using a temporary restriction orifice plate (ROP) to modify the residence time of the injected chemical. The technique proved very successful and identifed that product dispersibility was important, and that dilution of the active scale inhibitor had a positive effect on dispersibility for optimum inhibitor action. The lessons learned were rolled out to all at-risk field producers with positive results. The ongoing success of this program continues and will be detailed in the manuscript and presentation. This paper demonstrates a unique situation of calcium carbonate scale formation and control that utilized a previously unreported and analytical surveillance approach. The cumulative performance derived by improving not only chemical selection, but the way the wells were managed via surveillance and chemical management decision making processes is compelling and of value to other production chemists working in the scaling arena.


2021 ◽  
Author(s):  
Kathryn E. Watts ◽  
Gordon B. Haxel ◽  
David M. Miller

Abstract Mountain Pass is the site of the most economically important rare earth element (REE) deposits in the United States. Mesoproterozoic alkaline intrusions are spatiotemporally associated with a composite carbonatite stock that hosts REE ore. Understanding the genesis of the alkaline and carbonatite magmas is an essential scientific goal for a society in which critical minerals are in high demand and will continue to be so for the foreseeable future. We present an ion microprobe study of zircon crystals in shonkinite and syenite intrusions to establish geochronological and geochemical constraints on the igneous underpinnings of the Mountain Pass REE deposit. Silicate whole-rock compositions occupy a broad spectrum (50–72 wt % SiO2), are ultrapotassic (6–9 wt % K2O; K2O/Na2O = 2–9), and have highly elevated concentrations of REEs (La 500–1,100× chondritic). Zircon concordia 206Pb/238U-207Pb/235U ages determined for shonkinite and syenite units are 1409 ± 8, 1409 ± 12, 1410 ± 8, and 1415 ± 6 Ma (2σ). Most shonkinite dikes are dominated by inherited Paleoproterozoic xenocrysts, but there are sparse primary zircons with 207Pb/206Pb ages of 1390–1380 ± 15 Ma for the youngest grains. Our new zircon U-Pb ages for shonkinite and syenite units overlap published monazite Th-Pb ages for the carbonatite orebody and a smaller carbonatite dike. Inherited zircons in shonkinite and syenite units are ubiquitous and have a multimodal distribution of 207Pb/206Pb ages that cluster in the range of 1785–1600 ± 10–30 Ma. Primary zircons have generally lower Hf (&lt;11,000 ppm) and higher Eu/Eu* (&gt;0.6), Th (&gt;300 ppm), Th/U (&gt;1), and Ti-in-zircon temperatures (&gt;800°C) than inherited zircons. Oxygen isotope data reveals a large range in δ18O values for primary zircons, from mantle (5–5.5‰) to crustal and supracrustal (7–9‰). A couple of low-δ18O outliers (2‰) point to a component of shallow crust altered by meteoric water. The δ18O range of inherited zircons (5–10‰) overlaps that of the primary zircons. Our study supports a model in which alkaline and carbonatite magmatism occurred over tens of millions of years, repeatedly tapping a metasomatized mantle source, which endowed magmas with elevated REEs and other diagnostic components (e.g., F, Ba). Though this metasomatized mantle region existed for the duration of Mountain Pass magmatism, it probably did not predate magmatism by substantial geologic time (&gt;100 m.y.), based on the similarity of 1500 Ma zircons with the dominantly 1800–1600 Ma inherited zircons, as opposed to the 1450–1350 Ma primary zircons. Mountain Pass magmas had diverse crustal inputs from assimilation of Paleoproterozoic and Mesoproterozoic igneous, metaigneous, and metasedimentary rocks. Crustal assimilation is only apparent from high spatial resolution zircon analyses and underscores the need for mineral-scale approaches in understanding the genesis of the Mountain Pass system.


2021 ◽  
Author(s):  
Sara De Caroli ◽  
Ake Fagereng ◽  
Kohtaro Ujiie ◽  
Francesca Meneghini

&lt;p&gt;The geological properties of the subduction interface, such as stable metamorphic assemblages and the rheology of shear zone rocks, change with depth. Studies based on seismic and geodetic observations suggest that these changes can be accompanied by differences in seismic styles. In this realm, slow slip events (SSEs) and related tremor signals, grouped as episodic tremor and slip (ETS) events, have been detected down-dip of the subduction megathrust seismogenic zone. A wide range of mechanisms, some invoking rheological heterogeneity, has been proposed to explain ETS occurrence. Given that ETS events accommodate most of the plate interface displacement in a depth range below the seismogenic zone, it is of great interest to understand the rheology of the rock lithologies that are likely to host ETS along the deep subduction interface.&lt;/p&gt;&lt;p&gt;Here, we present data from an exhumed subduction complex in Ishigaki Island, Ryukyu Arc. In particular, we analyse the Triassic high pressure-low temperature Tomuru metamorphic rocks, which comprise blueschist and greenschist facies metabasites that underwent subduction-related deformation. These rocks offer an important natural laboratory in which to study the characteristics of blueschist deformation structures to infer rheology and, in particular, the role played by heterogeneities in an environment comparable to modern ETS down-dip of the seismogenic zone.&lt;/p&gt;&lt;p&gt;Through multiscale and multidisciplinary, field- and laboratory-based studies, including quantitative microstructural and image analyses, we focus on two main topics. Firstly, we aim to understand blueschist rheology, by documenting the deformation mechanisms active in blueschist rocks through electron backscatter diffraction (EBSD), in order to quantify intracrystalline deformation and lattice preferred orientation (LPO) development. Secondly, we study the effect of grain size on blueschist foliation development and, ultimately, on blueschist deformation. &amp;#160;Through these analyses, we hope to constrain both subduction interface strength and dominant mineral- scale deformation mechanisms at blueschist conditions.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document