Erratum: Comparative growth and feeding in zebra and quagga mussels (Dreissena polymorpha and Dreissena bugensis): implications for North American lakes

2003 ◽  
Vol 60 (11) ◽  
pp. 1432 ◽  
Author(s):  
Brad S Baldwin ◽  
Marilyn S Mayer ◽  
Jeffrey Dayton ◽  
Nancy Pau ◽  
Johanna Mendillo ◽  
...  
1997 ◽  
Vol 54 (10) ◽  
pp. 2428-2433 ◽  
Author(s):  
S L Roe ◽  
H J MacIsaac

Quagga mussel (Dreissena bugensis) population structure and reproductive status were assessed at deepwater (37 and 55 m) sites in eastern Lake Erie during July 1996. Mussels occupied ~70% of soft substrates at 37-m sites and between 63 and 90% at 55-m sites. Shell length and dry mass frequency distributions were similar at both sites, although recruits <<= 5 mm comprised a larger proportion of the population at the deeper site. The population surveyed here allocated disproportionately less mass to shell and more to soft tissues relative to zebra mussels (Dreissena polymorpha) from shallow-water sites in eastern Lake Erie and from Lake St. Clair. The population at 55 m was slightly skewed toward male mussels (58%). Female mussels that were examined for reproductive state contained mature oocytes (80%) or had spent gonads (20%). Because water temperature at the site was only 4.8°C, this survey provides the first evidence of gonadal development and spawning by quagga mussels at low temperature. These findings contrast with most reports of spawning by congeneric zebra mussels at temperatures >=>12°C but are consistent with distributions of the species in different basins of the lake.


1994 ◽  
Vol 72 (6) ◽  
pp. 1159-1162 ◽  
Author(s):  
Anthony Ricciardi

Up to 38% of zebra mussels (Dreissena polymorpha) and 10% of quagga mussels (Dreissena bugensis) collected from the upper St. Lawrence River in July 1993 were invaded by larvae of the tanytarsine chironomid Paratanytarsus sp. Third- and fourth-instar larvae were found living in the mantle cavity around the gills, gonads, and siphonal tissues. The larvae were never observed feeding on these tissues, and no tissue damage was detected. Most frequently, a single Paratanytarsus sp. larva occurred in a mussel; otherwise, two to six larvae were found. Invaded mussels were significantly larger than co-occurring non-invaded mussels. No chironomid larvae were found in young-of-the-year dreissenids. This is the first case of a large-scale endosymbiotic association, apparently a form of inquiline commensalism, between chironomid larvae and dreissenid mussels. Paratanytarsus sp. larvae also occurred in unionid bivalves (Elliptio complanata, Lampsilis radiata, Anodonta cataracta), but at relatively lower frequencies.


2015 ◽  
Vol 93 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Robert A. Krebs ◽  
Elizabeth M. Barkett ◽  
Matthew T. Begley

The arrival of zebra mussels (Dreissena polymorpha (Pallas, 1771)) and subsequently quagga mussels (Dreissena bugensis Andrusov, 1897) (Dreissenidae) in the Great Lakes in the 1980s induced many changes, most notably the devastation of native freshwater mussel species. Recently, empty shells of the fragile papershell (Leptodea fragilis (Rafinesque, 1820)) have become common, particularly in the western basin of Lake Erie, suggesting that this fast-growing species may be increasing in numbers in the lake. To examine continued competition with dreissenids, shell age and length of L. fragilis were used to contrast lifespan and growth rate, estimated as the slope of age on shell length, for shells from two beach localities where byssal threads were present on most shells and two sites where dreissenids were rare or absent. Few recent shells from Lake Erie beaches exceeded 5 years of age, and byssal thread counts were more numerous on older shells. Growth and lifespan were estimated to be significantly lower where dreissenid mussels remained numerous than when measured either from historic collections along Lake Erie or from protected populations. Therefore, even for this early-reproducing species, competition from dreissenids may continue to interfere with growth and shorten lifespan, which are effects few other unionid species can likely tolerate sufficiently to sustain population growth.


2003 ◽  
Vol 60 (2) ◽  
pp. 126-134 ◽  
Author(s):  
Ann Stoeckmann

I measured respiration, shell growth, body mass, and reproduction in sympatric populations of zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels in western Lake Erie to determine if the species differ in physiological parameters and if any differences provide an explanation for the recent displacement of zebra mussels by quagga mussels. Between May and August, I measured respiration (1998), shell growth of marked mussels suspended in cages in the lake (1999–2000), soft body mass and mass of gametes released (1998–2001), and the number of gametes released by individual mussels (1999). Quagga mussels had lower respiration rates and greater shell growth and body mass. There was no difference in the percentage of spawning mussels or the number of sperm released by individuals, but zebra mussels generally released more eggs and a greater mass of gametes than did quagga mussels. Similar reproduction at a lower body mass indicates that zebra mussels devote a greater proportion of body tissue to reproduction. Lower respiration rates and larger size give quagga mussels a competitive advantage and may explain their displacement of zebra mussels.


1999 ◽  
Vol 77 (6) ◽  
pp. 910-916 ◽  
Author(s):  
Jeremy S Mitchell ◽  
Robert C Bailey ◽  
Richard W Knapton

Several researchers have examined size-selective predation on dreissenid mussels by first measuring septa from crushed mussel shells found in predators' gastrointestinal tracts and then using a regression of septum length on shell length to infer the size of consumed mussels. We examine three assumptions made when using this approach: (1) that the shell length : septum length relationship is site-independent within the study area, (2) where both zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena bugensis) are present, that the shell length : septum length relationship is the same for both mussel species, and (3) that the predator foraged exclusively at the site of collection. We collected mussels at 6 sites along an 8-km stretch of Lake Erie shoreline and found that the shell length : septum length relationship varied significantly both among sites and between zebra mussels and quagga mussels. We then compared the regression for quagga mussels at one of these sites with that for intact valves of mussels taken from scaup (Aythya marila, Aythya affinis) collected at the site. Although ice cover at the time of collection restricted scaup to the site while foraging within the study area, regressions were again significantly different, i.e., scaup had been foraging elsewhere. Our results indicate that for at least some study sites, the use of septa to estimate dreissenid mussel size is not appropriate. However, when intact valves are found in a predator, variation in shell morphology can help to confirm or exclude possible foraging locales.


2002 ◽  
Vol 59 (4) ◽  
pp. 680-694 ◽  
Author(s):  
Brad S Baldwin ◽  
Marilyn S Mayer ◽  
Jeffrey Dayton ◽  
Nancy Pau ◽  
Johanna Mendilla ◽  
...  

In laboratory experiments, quagga mussels (Dreissena bugensis) survived as well as zebra mussels (Dreissena polymorpha) and equaled or exceeded their growth rate (–3 to 242% change in wet mass) when reared at 6 or 23°C and fed natural seston or Chlamydomonas at food levels ranging from 0.05–7.4 µg·L–1 chlorophyll a (chl a). Superior growth of quagga mussels was most pronounced at low food levels. We found no significant differences in per capita clearance rates (CR), functional responses, or feeding behavior between zebra and quagga mussels fed Chlamydomonas, Nannochloris, or mixed suspensions of Nannochloris and clay. Per capita CR ranged from 0.018 to 0.402 L·mussel–1·h–1 for zebra mussels and from 0.010 to 0.407 L·mussel–1·h–1 for quagga mussels. Because quagga mussels had more biomass per unit shell length, we found lower biomass-specific CR for quagga mussels. When fed natural seston, zebra and quagga mussels could selectively reject inorganic material and at the lowest seston level the assimilation efficiency of quagga mussels (81%) was significantly higher than that of zebra mussels (63%). Our experiments suggest that quagga mussels can survive, grow, and feed as well or better than zebra mussels in epilimnetic waters with either low or high productivity.


1995 ◽  
Vol 52 (3) ◽  
pp. 470-477 ◽  
Author(s):  
Anthony Ricciardi ◽  
Robert Serrouya ◽  
Frederick G. Whoriskey

We examined the effects of ambient temperature (10, 20, and 30 °C) and relative humidity (10, 50, and 95% RH) on the aerial exposure tolerance of adult zebra mussel (Dreissena polymorpha) and quagga mussel (D. bugensis) collected from the St. Lawrence River. Survivorship of mussels in air significantly increased with increasing RH, decreasing temperature, and increasing mussel size. At 20 °C and 50% RH (early temperate summer conditions), large (21–28 mm) D. polymorpha survived more than 5 days exposure, whereas small (10–18 mm) D. polymorpha survived 1–3 days. Seventy-three percent of large D. polymorpha and 10% of small D. polymorpha survived 10 days exposure at conditions considered optimal for survivorship (10 °C and 95% RH). Survivorship of D. bugensis was tested at 20 °C and was 15–100% lower than that of D. polymorpha at all RH levels combined with exposures less than 5 days. Dreissena bugensis also suffered significantly higher percent weight losses because of desiccation than D. polymorpha. The differences in the desiccation tolerance of zebra and quagga mussels reflect their relative depth distribution in lakes. Our results suggest that, given temperate summer conditions, adult Dreissena may survive overland transport (e.g., on small trailered boats) to any location within 3–5 days' drive of infested waterbodies.


2005 ◽  
Vol 62 (9) ◽  
pp. 1953-1962 ◽  
Author(s):  
Lisa A Jones ◽  
Anthony Ricciardi

Twenty sites along the St. Lawrence River were sampled to determine if the distribution and abundance of invasive mussels (zebra mussel (Dreissena polymorpha) and quagga mussel (Dreissena bugensis)) are explained by physicochemical variables. Calcium concentration, substrate size, and depth independently explained significant proportions of variation in biomass for both species. Zebra mussel populations occurred at calcium levels as low as 8 mg Ca·L–1, but quagga mussels were absent below 12 mg Ca·L–1, suggesting that they have higher calcium requirements. Both species increased in biomass with increasing substrate size but displayed contrasting patterns with depth. Using combinations of these environmental variables, we developed stepwise multiple regression models to predict zebra mussel biomass and quagga mussel biomass. The zebra mussel model included calcium concentration, substrate size, and depth (r2 = 0.36, P < 0.0001), while the quagga mussel model included only substrate size and depth (r2 = 0.32, P < 0.0001). These results suggest that dreissenid mussel abundance (and correlated impacts) will vary predictably across environmental gradients, but the same predictive model will not be accurate for both species.


1994 ◽  
Vol 72 (10) ◽  
pp. 1764-1770 ◽  
Author(s):  
Richard L. Miller ◽  
Jon J. Mojares ◽  
Jeffrey L. Ram

The occurrence of species-specific agents that attract sperm to spawned oocytes of zebra and quagga mussels might explain both the high fecundity of these species and their apparent inability to hybridize in nature. Ethanol extracts of freshly shed oocytes were prepared, dried, and redissolved in aquarium water and tested for sperm-attracting activity by micrometer-controlled pipetting into highly diluted suspensions of recently released sperm. The time course of the sperm responses was quantified by stop-frame video morphometric analysis of sperm density at various distances from the pipette tip. Controls included aquarium water, 10−3 M serotonin solutions used to induce release of sperm and oocytes, and ethanol extracts of aquarium water. Injection of oocyte extracts from both zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels elicited a significant increase in the density of actively motile conspecific sperm, usually within 10 s of extract release. No significant increase in sperm density was observed in response to any of the control solutions, nor was there any significant change in sperm kinematic parameters. Positive sperm responses were also obtained to whole-gonad acid extracts stored for 1 year or boiled. Although full-strength extracts attracted sperm of both species, serial half-dilution of the two extracts showed that a 100-fold higher concentration of attractant was required to attract sperm of the heterotypic compared with the homotypic species. Serotonin had no effect on the kinematics of either species' sperm. This is the first demonstration of sperm attraction to egg extracts in a bivalve.


Sign in / Sign up

Export Citation Format

Share Document