Impacts of the Eurasian round goby (Neogobius melanostomus) on benthic communities in the upper St. Lawrence River

2012 ◽  
Vol 69 (3) ◽  
pp. 469-486 ◽  
Author(s):  
Rebekah Kipp ◽  
Anthony Ricciardi

An invasive benthivorous fish, the Eurasian round goby ( Neogobius melanostomus ) is abundant throughout the lower Great Lakes – St. Lawrence River system. We examined the round goby’s potential to alter benthic communities on cobble substrates in the upper St. Lawrence River. During the summers of 2008 and 2009, macroinvertebrates and benthic algae were sampled across sites with varying goby densities. Archived data from various sites in 2004–2006 (prior to invasion) were available for comparison. Macroinvertebrate community composition varied significantly among samples grouped into categories based on goby density and time since invasion. Macroinvertebrate diversity and dominance by large-bodied taxa declined with increasing goby density. Surprisingly, dreissenid biomass did not vary consistently with goby density, in contrast to studies in the Great Lakes. The biomass of all non-dreissenid taxa was negatively correlated with increasing goby density across sites and over time at three of four sites. Negative effects were most pronounced on the biomass of gastropods. Benthic algal biomass increased with goby density across sites, suggesting a trophic cascade driven by the impacts of gobies on gastropods and other algivores. Our study highlights the potential ecosystem impacts of an expanding goby population in a large river.


Author(s):  
Heather Bauer Reid ◽  
Anthony Ricciardi

Climate warming is expected to alter the distribution, abundance, and impact of non-native species in aquatic ecosystems. In laboratory experiments, we measured the maximum feeding rate and critical thermal maximum (CTmax) of an invasive Eurasian fish, the round goby (Neogobius melanostomus), acclimated to a range of temperatures (18–28°C) reflecting current and projected future thermal conditions for the nearshore Great Lakes. Fish were collected from four distinct populations along a latitudinal gradient from the western basin of Lake Erie to Hamilton Harbour (Lake Ontario) and the upper St. Lawrence River. Thermal tolerance increased with acclimation temperature for populations in lakes Erie and Ontario. However, the St. Lawrence River populations had lower acclimation capacity and exhibited an unexpected decline in CTmax at the highest acclimation temperature. Maximum feeding rates peaked at 18–24°C and declined with temperatures above 24°C. Northern populations in the basin appear poorly adapted to elevated temperatures such that their performance and impact could be reduced by climate warming. Thermal response data from latitudinally distributed populations are needed to inform invasive species risk assessment.



2002 ◽  
Vol 59 (7) ◽  
pp. 1209-1228 ◽  
Author(s):  
Henry A Vanderploeg ◽  
Thomas F Nalepa ◽  
David J Jude ◽  
Edward L Mills ◽  
Kristen T Holeck ◽  
...  

We describe, explain, and "predict" dispersal and ecosystem impacts of six Ponto-Caspian endemic species that recently invaded the Great Lakes via ballast water. The zebra mussel, Dreissena polymorpha, and quagga mussel, Dreissena bugensis, continue to colonize hard and soft substrates of the Great Lakes and are changing ecosystem function through mechanisms of ecosystem engineering (increased water clarity and reef building), fouling native mussels, high particle filtration rate with selective rejection of colonial cyanobacteria in pseudofeces, alteration of nutrient ratios, and facilitation of the rapid spread of their Ponto-Caspian associates, the benthic amphipod Echinogammarus ischnus and the round goby, Neogobius melanostomus, which feeds on zebra mussels. The tubenose goby,Proterorhinus marmoratus, which does not feed on zebra mussels, has not spread rapidly. Impacts of these benthic invaders vary with site: in some shallow areas, habitat changes and the Dreissena [Formula: see text] round goby [Formula: see text] piscivore food chain have improved conditions for certain native game fishes and waterfowl; in offshore waters, Dreissena is competing for settling algae with the native amphipod Diporeia spp., which are disappearing to the detriment of the native deep-water fish community. The predatory cladoceran Cercopagis pengoi may compete with small fishes for zooplankton and increase food-chain length.



<em>Abstract</em>.— Long-term research indicates a significant and ongoing decline within the upper St. Lawrence River Muskellunge <em>Esox masquinongy </em>population. Index surveys show a sharp reduction in catch of both spawning adults and age-0 Muskellunge, and catch rates by anglers have similarly declined while harvest remains low. Other changes associated with population decline include presence of fewer female adult Muskellunge and a change in adult Muskellunge size structure (increase in proportion of fish <1,016 mm) in addition to more large individuals greater than 1,372 mm. A significant adult die-off occurred from 2005 to 2008 (103 adults recovered in U.S. and Canadian waters) concomitant with an outbreak of viral hemorrhagic septicemia (VHS). These population changes were also temporally correlated with detection and proliferation of invasive Round Goby <em>Neogobius melanostomus</em>, a known VHS virus (VHSV) reservoir, egg predator, and competitor with native fishes. Comparisons of index netting before and after VHSV and Round Goby invasions suggest a direct link to the decline, but because these are correlations, we can only explore these effects. To examine the viability of Muskellunge nursery sites, we repeated survival studies conducted in the early 1990s with experimental releases of advanced fry at four locations during 2013–2015. Findings indicate contribution to age-0 populations, but catches poststocking (wild and stocked) were lower compared to the 1990s. We review information regarding potential stressors, including VHSV and Round Goby invasion, and conclude that their combined effects have created significant uncertainty and challenges to sustainable management of the Muskellunge population. In response, the St. Lawrence River Muskellunge management plan should be updated with a focus on restoration of the declining Muskellunge stock. Recommended actions target advancing conservation and restoration of critical habitat, restoring lost subpopulations, and reducing mortality associated with angling (e.g., from handling and harvest).



2005 ◽  
Vol 119 (4) ◽  
pp. 582 ◽  
Author(s):  
M. Brian C. Hickey ◽  
Adrienne R. Fowlie

We document the first reported occurrence of the Round Goby, Neogobius melanostomus, a small benthic fish native to the Black and Caspian seas, in the St. Lawrence River near Cornwall. On 7 September 2004, we observed approximately 20 Round Gobies while SCUBA diving at a depth of 7 m, downstream of the Saunders Generating Station at Cornwall, Ontario. Round Gobies appear to have arrived recently in this reach of the river and have not previously been detected despite extensive fish surveys conducted in the area.



1991 ◽  
Vol 1991 (1) ◽  
pp. 593-600
Author(s):  
Poojitha D. Yapa ◽  
Hung Tao Shen ◽  
Steven F. Daly ◽  
Stephen C. Hung

ABSTRACT Computer models recently have been developed for simulating oil slick transport in rivers, including the connecting channels of the Great Lakes, the upper St. Lawrence River, and the Allegheny-Monongahela-Ohio River system. In these models, a Lagrangian discrete-parcel algorithm is used to determine the location and concentration distribution of the oil in the river as well as the deposition of oil on the shore. The model for the Great Lakes connecting channels (ROSS) is a two-dimensional surface slick model which considers advection, spreading, horizontal diffusion, evaporation, dissolution, and shoreline deposition. The model is applicable to both open water and ice covered conditions. Models for the St. Lawrence River and the Ohio River System are developed based on a two-layer scheme (ROSS2) which considers vertical mixing and emulsiflcation processes in addition to the processes considered in the surface slick model. All of these models are implemented on microcomputers and can be used as integral parts of oil spill response programs to assist cleanup actions.



2011 ◽  
Vol 20 (9) ◽  
pp. 1845-1859 ◽  
Author(s):  
JENNIFER E. BRONNENHUBER ◽  
BRAD A. DUFOUR ◽  
DENNIS M. HIGGS ◽  
DANIEL D. HEATH


2016 ◽  
Vol 67 (3) ◽  
pp. 309 ◽  
Author(s):  
Paradzayi Tagwireyi ◽  
S. Mažeika P. Sullivan

Development and agriculture are increasingly encroaching into riparian areas, with largely unknown effects on nearshore arthropods, which are important components of linked aquatic–terrestrial food webs. To assess the environmental determinants of the distribution and trophic dynamics of riparian spiders of the family Tetragnathidae, we characterised riparian habitat, collected emergent aquatic insects, and surveyed spiders in developed and rural landscapes of the Scioto River system, Ohio, USA, which provided a range of riparian land cover, nearshore vegetation types and habitat complexity. We also estimated the trophic position (TP) of Tetragnathidae and the proportion of energetic and nutritional subsidies derived from benthic algae (EBA) using naturally abundant carbon (C) and nitrogen (N) stable isotopes. Model-selection results revealed that tetragnathid spider density (1.57–3.80individualsm–1) was more sensitive to differences in overhanging vegetation than to those in aquatic food resources (i.e. emergent aquatic insects). Tetragnathidae TP, which averaged 3.16 across all 12 study reaches (range: 2.35–3.98), was largely driven by canopy density, shoreline shape, percentage overhanging vegetation and emergent-insect density. Emergent-insect density was the strongest driver of tetragnathid spider EBA (0.04–0.54, µ=0.24). Our study reinforced the notion that riparian spiders ecologically link aquatic and terrestrial ecosystems. In particular, our results further current understanding of the mechanisms affecting riparian spider distribution and trophic dynamics, particularly in the context of larger stream and river systems, given that the propensity of related research has occurred in small streams.



1998 ◽  
Vol 55 (7) ◽  
pp. 1759-1765 ◽  
Author(s):  
Anthony Ricciardi ◽  
Joseph B Rasmussen

The identification and risk assessment of potential biological invaders would provide valuable criteria for the allocation of resources toward the detection and control of invasion threats. Yet, freshwater biologists have made few attempts at predicting potential invaders, apparently because such efforts are perceived to be costly and futile. We describe some simple, low-cost empirical approaches that would facilitate prediction and demonstrate their use in identifying high-risk species from an important donor region: the Ponto-Caspian (Black, Caspian, and Azov seas) basin. This region is the source of several freshwater organisms already invading North America, including the zebra mussel (Dreissena polymorpha), quagga mussel (Dreissena bugensis), ruffe (Gymnocephalus cernuus), and round goby (Neogobius melanostomus). Based on a thorough literature review, we identify 17 additional Ponto-Caspian animals that have recent invasion histories and are likely to be transported overseas in ship ballast water; moreover, their broad salinity tolerance could allow them to survive an incomplete ballast-water exchange. These results suggest that, unless current vectors are more effectively controlled, the Great Lakes - St. Lawrence River system and other North American inland waterways will continue to receive and be impacted by invasive Eurasian species.



1995 ◽  
Vol 52 (12) ◽  
pp. 2695-2703 ◽  
Author(s):  
Anthony Ricciardi ◽  
Fred L. Snyder ◽  
David O. Kelch ◽  
Henry M. Reiswig

Freshwater sponges in the Great Lakes – St. Lawrence River system overgrow and kill introduced zebra (Dreissena polymorpha) and quagga mussels (Dreissena bugensis) on solid substrates. Sponges overgrow and smother mussel siphons, thereby interfering with normal feeding and respiration. We tested the significance of sponge-enhanced mussel mortality by repeated sampling at several sites where both organisms were abundant in the upper St. Lawrence River and on an artificial reef in central Lake Erie. A small proportion (<10%) of the dreissenid population at each site was overgrown by sponge. Mussel colonies that were completely overgrown for 1 or more months invariably contained a significantly greater proportion of dead mussels than local uncovered populations. Mussels that survived prolonged periods (4–6 months) of overgrowth suffered significant tissue weight losses. Laboratory experiments and field observations suggest that dreissenids are not able to colonize sponges; therefore, sponges should always dominate competitive overgrowth situations. The overall impact of sponges on dreissenid populations in the Great Lakes – St. Lawrence River system will probably be negligible because of the high rate of mussel recruitment and the environmental constraints on sponge growth; however, our results suggest that sponges may control mussel abundance locally.



2012 ◽  
Vol 38 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Rebekah Kipp ◽  
Issac Hébert ◽  
Myriam Lacharité ◽  
Anthony Ricciardi


Sign in / Sign up

Export Citation Format

Share Document