Oil Spill Simulation in Rivers

1991 ◽  
Vol 1991 (1) ◽  
pp. 593-600
Author(s):  
Poojitha D. Yapa ◽  
Hung Tao Shen ◽  
Steven F. Daly ◽  
Stephen C. Hung

ABSTRACT Computer models recently have been developed for simulating oil slick transport in rivers, including the connecting channels of the Great Lakes, the upper St. Lawrence River, and the Allegheny-Monongahela-Ohio River system. In these models, a Lagrangian discrete-parcel algorithm is used to determine the location and concentration distribution of the oil in the river as well as the deposition of oil on the shore. The model for the Great Lakes connecting channels (ROSS) is a two-dimensional surface slick model which considers advection, spreading, horizontal diffusion, evaporation, dissolution, and shoreline deposition. The model is applicable to both open water and ice covered conditions. Models for the St. Lawrence River and the Ohio River System are developed based on a two-layer scheme (ROSS2) which considers vertical mixing and emulsiflcation processes in addition to the processes considered in the surface slick model. All of these models are implemented on microcomputers and can be used as integral parts of oil spill response programs to assist cleanup actions.

2008 ◽  
Vol 2008 (1) ◽  
pp. 615-619 ◽  
Author(s):  
Tim L. Robertson ◽  
S. Anil Kumar

ABSTRACT Technological advancements in oil spill response systems have contributed to more proficient oil spill response operations. Yet, there are still times when oil is being shipped but environmental conditions, such as wind, waves, temperature, and visibility, preclude effective spill response operations. The Response Gap is this window between the point of maximum mechanical response capacity and the weather-based limits of oil transportation. To quantify the Response Gap for two operating areas in Prince William Sound (PWS), Alaska, historical datasets of the environmental factors known to affect the open-water mechanical response system were assembled. Each dataset contained observations related to four environmental factors: wind, sea state, temperature, and visibility. These datasets were used in a “hind-cast” to evaluate how often environmental conditions exceed the response operating limits. Response operating limits were determined based on a thorough review of the published literature, existing contingency plans, regulatory standards, and after-action reports, with the objective of establishing realistic limits for the existing open-water response system. Response limits were then coded using the colors red (response not possible), yellow (response possible but impaired), and green (response possible) for a particular environmental factor during each operational period. A Response Gap Index (RGI) was calculated to incorporate the interactions between environmental factors. Once the RGI was computed for each observational period, the dataset was summarized to produce an estimate of the amount of time that the Response Gap existed. The met-ocean climatology is characterized using histograms and joint-probability distribution plots, with the RGI superimposed. At Hinchinbrook Entrance, sea state exceeded the operating limits 19.2% of the time and wind exceeded the limits 2.9% of the time. When the environmental factors were considered together, the response limitations were exceeded 37.7% of the time. Not surprisingly, the response limits were exceeded more often in winter (65.4% of the time) than in summer (15.6% of the time). Results for Central PWS indicated that the response limitations were exceeded only 12.6% of the time. The paper discusses ways to improve the present subjective quantification of response limits, particularly through additional field trials and modeling of mechanical recovery systems.


1997 ◽  
Vol 1997 (1) ◽  
pp. 881-885 ◽  
Author(s):  
Scott B. Robertson ◽  
Alexis Steen ◽  
Robert Pavia ◽  
LCDR David Skewes ◽  
Ann Hayward Walker

ABSTRACT When planning response activities for an oil spill, decision makers must react to a wide range of circumstances. Decisions will vary depending on the type of petroleum product spilled and the nature of the impacted habitat. Response decisions will be based on tradeoffs dealing with the environmental consequences of the spilled oil and the response method selected, as well as the efficiency and effectiveness of the method. A new manual, Marine Oil Spill Response Options for Minimizing Environmental Impacts, is being jointly produced by industry and government to facilitate decision making for both prespill planning and incident response. Guidance will be provided through matrix tables indicating the relative environmental consequences of the different response options used for various categories of oil in open water and shoreline habitats. This paper describes the contents of the new manual.


1999 ◽  
Vol 1999 (1) ◽  
pp. 59-62
Author(s):  
Atsushi Koshikawa ◽  
Takashi Fujii ◽  
Tetsuo Takahata

ABSTRACT This oil spill simulation model (latest version is 4) is the model which was developed as the part of “Major Oil Spill Response Programme” which the Petroleum Association of Japan (PAJ) has been conducting. This model covers the whole area of Japanese Waters. This model has three major features. First, this model can use the 3km grid wind forecast data that are most sensitive for accuracy of trajectory of an oil slick, provided by the Japan Weather Association (JWA). This data is updated every 12 hours. Secondly, the oil slick trajectory and some physical characteristics of oil can be calculated within about 5 min. Thirdly, this model has been designed for simple operations so that it can be used popularly by people other than computer or simulation experts. This paper outlines the main function of the model with the application for the study on the Diamond Grace incident that occurred in July 1997. The authors also show the validity of the model prediction result through comparison with the drift experiment. The basic model of PAJ oil spill simulation model is not intended only for Japanese waters. However, if the additional data are prepared, the model can be applied to any coastal area.


1995 ◽  
Vol 52 (12) ◽  
pp. 2695-2703 ◽  
Author(s):  
Anthony Ricciardi ◽  
Fred L. Snyder ◽  
David O. Kelch ◽  
Henry M. Reiswig

Freshwater sponges in the Great Lakes – St. Lawrence River system overgrow and kill introduced zebra (Dreissena polymorpha) and quagga mussels (Dreissena bugensis) on solid substrates. Sponges overgrow and smother mussel siphons, thereby interfering with normal feeding and respiration. We tested the significance of sponge-enhanced mussel mortality by repeated sampling at several sites where both organisms were abundant in the upper St. Lawrence River and on an artificial reef in central Lake Erie. A small proportion (<10%) of the dreissenid population at each site was overgrown by sponge. Mussel colonies that were completely overgrown for 1 or more months invariably contained a significantly greater proportion of dead mussels than local uncovered populations. Mussels that survived prolonged periods (4–6 months) of overgrowth suffered significant tissue weight losses. Laboratory experiments and field observations suggest that dreissenids are not able to colonize sponges; therefore, sponges should always dominate competitive overgrowth situations. The overall impact of sponges on dreissenid populations in the Great Lakes – St. Lawrence River system will probably be negligible because of the high rate of mussel recruitment and the environmental constraints on sponge growth; however, our results suggest that sponges may control mussel abundance locally.


2021 ◽  
Vol 9 (9) ◽  
pp. 1034
Author(s):  
Chijioke D. Eke ◽  
Babatunde Anifowose ◽  
Marco J. Van De Wiel ◽  
Damian Lawler ◽  
Michiel A. F. Knaapen

Oil spills in estuaries are less studied and less understood than their oceanic counterparts. To address this gap, we present a detailed analysis of estuarine oil spill transport. We develop and analyse a range of simulations for the Humber Estuary, using a coupled hydrodynamic and oil spill model. The models were driven by river discharge at the river boundaries and tidal height data at the offshore boundary. Satisfactory model performance was obtained for both model calibration and validation. Some novel findings were made: (a) there is a statistically significant (p < 0.05) difference in the influence of hydrodynamic conditions (tidal range, stage and river discharge) on oil slick transport; and (b) because of seasonal variation in river discharge, winter slicks released at high water did not exhibit any upstream displacement over repeated tidal cycles, while summer slicks travelled upstream into the estuary over repeated tidal cycles. The implications of these findings for operational oil spill response are: (i) the need to take cognisance of time of oil release within a tidal cycle; and (ii) the need to understand how the interaction of river discharge and tidal range influences oil slick dynamics, as this will aid responders in assessing the likely oil trajectories.


2003 ◽  
Vol 2003 (1) ◽  
pp. 625-629
Author(s):  
Charlie Henry ◽  
Charles E. Sasser ◽  
Guerry O. Holm ◽  
Kevin Lynn ◽  
John Brolin ◽  
...  

ABSTRACT Freshwater marshes cover 4000 square kilometers of the Louisiana coastal zone and are the most abundant marsh habitat type. Many of these marshes actually float as organic mats on underlying water. Some estimates suggest as much as 70% of Louisiana's coastal freshwater marsh are of the floating variety. The slow flow of water characteristic of these environments generally transports very little sediment. As a result, the marsh substrate is composed of primarily live and dead organic matter (peat formation) rather than mineral sediments. Since floating marshes are structurally different than intertidal marsh habitats, many traditional oil spill response options are ineffective or inappropriate. Access to the marsh is often limited since there is no open water ingress and the marsh structure cannot support the weight of equipment. Oil spill response options are further complicated when the source of the oil is a pipeline leak located below the floating marsh mat; spilled oil is free to travel at the interface of the underlying water and mat. Protection booming is impossible. Oil impacts often result in the death of all the living plants that are integral to the formation and sustainability of the habitat. This paper reports on two oil spills in a floating marsh near Paradis, Louisiana that occurred eight years apart. Both spills were spatially close to each other, which provided an excellent comparison for assessing potential long-term impact from oil spills in floating marshes. During both oil spill responses, unique response techniques were developed to recover spilled oil and enhance marsh recovery. An effective technique was to rake away and remove the dead oil-contaminated surface plant debris from the site and employ sorbent recovery. Lessons learned from these responses were used to develop mitigation guidance for future responses.


2012 ◽  
Vol 69 (3) ◽  
pp. 469-486 ◽  
Author(s):  
Rebekah Kipp ◽  
Anthony Ricciardi

An invasive benthivorous fish, the Eurasian round goby ( Neogobius melanostomus ) is abundant throughout the lower Great Lakes – St. Lawrence River system. We examined the round goby’s potential to alter benthic communities on cobble substrates in the upper St. Lawrence River. During the summers of 2008 and 2009, macroinvertebrates and benthic algae were sampled across sites with varying goby densities. Archived data from various sites in 2004–2006 (prior to invasion) were available for comparison. Macroinvertebrate community composition varied significantly among samples grouped into categories based on goby density and time since invasion. Macroinvertebrate diversity and dominance by large-bodied taxa declined with increasing goby density. Surprisingly, dreissenid biomass did not vary consistently with goby density, in contrast to studies in the Great Lakes. The biomass of all non-dreissenid taxa was negatively correlated with increasing goby density across sites and over time at three of four sites. Negative effects were most pronounced on the biomass of gastropods. Benthic algal biomass increased with goby density across sites, suggesting a trophic cascade driven by the impacts of gobies on gastropods and other algivores. Our study highlights the potential ecosystem impacts of an expanding goby population in a large river.


2010 ◽  
Vol 67 (2) ◽  
pp. 256-268 ◽  
Author(s):  
Michael P. Rup ◽  
Sarah A. Bailey ◽  
Chris J. Wiley ◽  
Mark S. Minton ◽  
A. Whitman Miller ◽  
...  

Ballast water is recognized globally as a major vector of aquatic nonindigenous species (NIS) introductions; domestic ballast water transfers, however, have generally been considered low risk in North America. We characterize ballast operations of domestic ships in the Great Lakes – St. Lawrence River system (Lakers) during 2005–2007 to examine the risk of primary and secondary introductions associated with ballast water transfers over short distances. Results indicate that Lakers transported at least 68 million tonnes of ballast water annually. Approximately 71% of ballast water transfers were interregional, with net movement being from lower to upper lakes. A small proportion of ballast water discharged in the Great Lakes (<1%) originated from ports in the St. Lawrence River that may serve as sources for new NIS. These results indicate that domestic ballast water transfers may contribute to NIS introductions and are likely the most important ballast-mediated pathway of secondary spread within the Great Lakes. Future efforts to reduce invasion impacts should consider both primary and secondary introduction mechanisms.


Sign in / Sign up

Export Citation Format

Share Document