The Effects of Freezing on Marine Bacteria.: I. Quantitative Studies.

1934 ◽  
Vol 1 (2) ◽  
pp. 95-108 ◽  
Author(s):  
Ernest Hess

When marine bacteria were exposed to a moderate freezing temperature, −16 °C., for short periods, sea-water offered greater protection than broth media or distilled water. Reduction in number of bacteria was least severe in broth media of optimum salt-concentration and hydrogen ion concentration. During freezing in distilled water, transfer of bacteria from the crystallizing portion to the liquid part occurred. Old strains were more resistant to freezing, and previous cultivation at −3° produced more resistant strains. A higher percentage of cells were killed by freezing at lower freezing temperatures, by prolonged freezing, rapid freezing and repeated freezing. In truly super-cooled sea-water higher percentage reduction occurred than in frozen sea-water at −6.5° and −10°.

Nature ◽  
1923 ◽  
Vol 111 (2778) ◽  
pp. 132-133
Author(s):  
J. J.

Author(s):  
W. R. G. Atkins

The present paper is a continuation of the work already published under the above general title and should be considered in relation to the results previously recorded. The method of performing the measurements remained unchanged; xylenol blue was used to check the determinations made with cresol red in the more alkaline regions—namely, around pH 8.24. The water was tested immediately after being drawn, or within a few hours, unless otherwise stated in the tables.


1922 ◽  
Vol 4 (3) ◽  
pp. 305-317 ◽  
Author(s):  
Edwin B. Powers

1. The ability of marine fishes to absorb oxygen at low tension from the sea water is more or less dependent upon the hydrogen ion concentration of the water. 2. The ability of fishes to withstand wide variations in the range of hydrogen ion concentration of the sea water can be correlated with their habitats. The fishes that are most resistant to a wide variation in the hydrogen ion concentration are most cosmopolitan in their habitat. Those that are least resistant to a variation in the hydrogen ion concentration are the most restricted in their range of habitat. 3. There is a close correlation between the optimum condition of the sea water for the absorption of oxygen at low tension by the herring (Clupea pallasii), the condition of the sea water to which they react positive and that in which they are found most abundantly. 4. It is suggested that the variation in the ability to absorb oxygen at low tension at a given pH of individuals of a species is dependent upon the alkaline reserve of the blood of the individual fish.


1950 ◽  
Vol 7d (10) ◽  
pp. 599-607 ◽  
Author(s):  
J. M. Snow

The myosin fraction of fish muscle is isolated from the other proteins and is used in a study of denaturation by freezing as determined by solubility changes. The effects of the physical state of the protein, the rate of freezing, and the hydrogen ion concentration have been determined. Ions and salts showed a significant effect when the freezing temperature was lower than the cryohydric points of the salts.


Author(s):  
W. R. G. Atkins

In the first publication under the above general title the seasonal changes in sea water were studied, but as explained previously it was not possible to regard all the data as of an equal degree of accuracy. For this and other reasons the seasonal changes were further traced in the hydrographical cruises up to October, 1922, when the approach of the winter equilibrium made it profitless for some months to continue. Since, however, at times from April to September the changes are relatively rapid it may be advisable to follow up the matter during the period mentioned at shorter intervals.


1982 ◽  
Vol 28 (4) ◽  
pp. 414-424 ◽  
Author(s):  
Richard A. Laddaga ◽  
Robert A. MacLeod

Eighteen gram-negative marine bacteria and two terrestrial species, Escherichia coli and Pseudomonas aeruginosa, were examined for their sensitivity to lysis in distilled water after exposure either to a salt solution containing a sea water concentration of Mg2+ (0.05 M) or to 0.5 M NaCl. A spectrum of lytic susceptibility was observed among the marine bacteria ranging from those organisms which lysed in distilled water after exposure to the Mg2+-containing solution, through organisms which could be sensitized to lysis by washing with the NaCl solution, to organisms which failed to lyse in distilled water even after having been washed with a solution of 0.5 M NaCl. Pseudomonas aeruginosa and E. coli fell within this spectrum, the former being capable of being induced to lyse in distilled water by washing with 0.5 M NaCl, while the latter failed to lyse in distilled water after this treatment. It was thus concluded that no overall distinction could be made between marine and terrestrial bacteria on the basis of the sensitivity of the two groups of organisms to lysis in freshwater.Quite large decreases in optical density and increases in the release of ultraviolet-absorbing material took place when cells preexposed to the Mg2+-containing solution or to 0.5 M NaCl were subsequently suspended in distilled water even though in some cases no loss of cell numbers could be detected. In most cases two to three times as much K+ as Na+ and 1/10 to 1/100 as much Mg2+ was required to prevent these changes. For three of the marine bacteria and P. aeruginosa grown in a terrestrial type medium little difference in the requirements for Na+ and K+ to prevent the optical density changes was noted. For P. aeruginosa grown in a marine type medium, cells required more K+ than Na+ to prevent these changes.


1934 ◽  
Vol 17 (6) ◽  
pp. 803-816 ◽  
Author(s):  
J. B. Allison ◽  
William H. Cole

1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate, and sulfate is correlated with equivalent concentrations of the salts added to sea water, or with the forces of primary valence. Although the threshold for stimulation by the salts is considerably higher than for the acids, the efficiency of stimulation by the salts is greater.


Sign in / Sign up

Export Citation Format

Share Document