Toxicity of Various Formulations of 2,4-D to Salmonids in Southeast Alaska

1974 ◽  
Vol 31 (4) ◽  
pp. 480-485 ◽  
Author(s):  
William R. Meehan ◽  
Logan A. Norris ◽  
Howard S. Sears

To determine acute toxicity to juvenile (1) pink, chum, coho, and sockeye salmon, (2) Dolly Varden char, and (3) rainbow trout, 2,4-D acid, butyl and isooctyl esters were tested in southeast Alaska. A comparable test was made in Oregon using coho salmon fingerlings. The mean percent mortality after 96 h and the highest concentration of herbicide that did not produce any mortality were determined for each formulation tested.At less than 50 ppm 2,4-D acid produced no mortality except in pink salmon fry. The butyl ester was most toxic causing nearly complete mortality in all species at concentrations > 1.0 ppm and the isooctyl ester least toxic of the ester formulations. Alaskan and Oregon coho fingerlings were similar in their responses to 2,4-D acid, butyl and isooctyl esters. The toxicities of three different formulations of isooctyl ester, a PGBE ester, and butyl ester to Alaskan coho fingerlings were also determined. There were few or no differences in toxicity among isooctyl ester formulations. The butyl and PGBE esters were similar in toxicity.

1988 ◽  
Vol 66 (1) ◽  
pp. 266-273 ◽  
Author(s):  
C. B. Murray ◽  
J. D. McPhail

Embryo and alevin survival, time to hatching and emergence, and alevin and fry size of five species of Pacific salmon (Oncorhynchus) were observed at five incubation temperatures (2, 5, 8, 11, and 14 °C). No pink (Oncorhynchus gorbuscha) or chum (O. keta) salmon embryos survived to hatching at 2 °C. Coho (O. kisutch) and sockeye (O. nerka) salmon had higher embryo survival at 2 °C than chinook (O. tschawytscha) salmon. At 14 °C, chum, pink, and chinook salmon had higher embryo survival than coho or sockeye salmon. In all species, peaks of embryo mortality occurred at specific developmental stages (completion of epiboly, eye pigmentation, and hatching). Alevin survival to emergence was high for all species, except for coho and pink salmon at 14 °C. Hatching and emergence time varied inversely with incubation temperature, but coho salmon hatched and emerged sooner at all temperatures than the other species. Coho and sockeye salmon alevins were larger at 2 °C, pink, chum, and chinook salmon alevins were larger at 5 and 8 °C. Coho salmon fry were larger at 2 °C, chinook and chum salmon fry were larger at 5 °C, and sockeye and pink salmon fry were larger at 8 °C. High incubation temperatures reduced fry size in all species. Each species of Pacific salmon appears to be adapted to different spawning times and temperatures, and thus indirectly to specific incubation temperatures, to ensure maximum survival and size and to maintain emergence at the most favorable time each year.


2011 ◽  
Vol 68 (6) ◽  
pp. 1122-1130 ◽  
Author(s):  
James R. Irvine ◽  
Masa-aki Fukuwaka

Abstract Irvine, J. R., and Fukuwaka, M. 2011. Pacific salmon abundance trends and climate change. – ICES Journal of Marine Science, 68: 1122–1130. Understanding reasons for historical patterns in salmon abundance could help anticipate future climate-related changes. Recent salmon abundance in the northern North Pacific Ocean, as indexed by commercial catches, has been among the highest on record, with no indication of decline; the 2009 catch was the highest to date. Although the North Pacific Ocean continues to produce large quantities of Pacific salmon, temporal abundance patterns vary among species and areas. Currently, pink and chum salmon are very abundant overall and Chinook and coho salmon are less abundant than they were previously, whereas sockeye salmon abundance varies among areas. Analyses confirm climate-related shifts in abundance, associated with reported ecosystem regime shifts in approximately 1947, 1977, and 1989. We found little evidence to support a major shift after 1989. From 1990, generally favourable climate-related marine conditions in the western North Pacific Ocean, as well as expanding hatchery operations and improving hatchery technologies, are increasing abundances of chum and pink salmon. In the eastern North Pacific Ocean, climate-related changes are apparently playing a role in increasing chum and pink salmon abundances and declining numbers of coho and Chinook salmon.


2000 ◽  
Vol 57 (6) ◽  
pp. 1252-1257 ◽  
Author(s):  
Yolanda Morbey

Protandry, the earlier arrival of males to the spawning grounds than females, has been reported in several studies of Pacific salmon (Oncorhynchus spp.). However, the reasons for protandry in salmon are poorly understood and little is known about how protandry varies among and within populations. In this study, protandry was quantified in a total of 105 years using gender-specific timing data from seven populations (one for pink salmon (O. gorbuscha), three for coho salmon (O. kisutch), two for sockeye salmon (O. nerka), and one for chinook salmon (O. tshawytscha)). Using a novel statistical procedure, protandry was found to be significant in 90% of the years and in all populations. Protandry may be part of the males' strategy to maximize mating opportunities and may facilitate mate choice by females.


1955 ◽  
Vol 12 (3) ◽  
pp. 451-485 ◽  
Author(s):  
D. J. Milne

The general history of the Skeena River commercial salmon fishery is presented from 1877 to 1948. The changes in fishing areas, seasons and fishing methods are described, together with the trends in the catches obtained. The most accurate data pertain to the important sockeye salmon gill-net fishery. The sockeye catch attained a maximum of 187,000 cases in 1910 and since then has declined to a minimum of 28,000 cases in 1933 and 1943. In recent years the catches have tended to level off. The pink salmon catches declined markedly after 1930. The chum catches also appear to have declined in recent years. Whether or not the spring and coho salmon catches have declined is not known. The size of the sockeye catch appears to be the best available measure of the relative size of the population. An analysis of the age cycles in the catch of sockeye and pink salmon did not reveal a practical basis for prediction. Some possible changes in the fishing regulations are discussed and the need for more data on the fluctuations in the size of the stocks during the fresh water phase is stressed.


1950 ◽  
Vol 8a (2) ◽  
pp. 67-73 ◽  
Author(s):  
Roland W. Radcliffe

Goldfish (Carassius auratus L.) and coho salmon fry (Oncorhynchus kisutch Walbaum) were acclimatized to temperatures of 20 °C. and 3 °C. respectively. The fish were placed, one at a time, once a day, for ten days, in a rotating annular chamber and the cruising speed was found. Then various fins were removed and the fish were given ten more trials. The mean cruising speeds before and after clipping were compared. The clipped fish suffered no loss in ability to swim at a constant rate. The data suggest that, for fish of a given weight and length, cruising speed is slightly improved by clipping. Any increased mortality in marked fish is due to loss of stability and control rather than loss in ability to swim steadily.


2018 ◽  
Vol 193 ◽  
pp. 78-87
Author(s):  
V. F. Bugaev ◽  
I. V. Tiller

Runs and escapements of sockeye salmon to the Zhupanova River have increased since 1985 with the run of 10.63 . 103 ind. instead of 1.45 . 103 ind. in 1960–1984, on average. The increasing was reasoned by change of the pink salmon odd year-classes domination in West Kamchatka to domination of even year-classes after the extremely high escapement in 1983. In 2005–2006, the sockeye salmon stock in the Zhupanova River became even more higher that continues till nowadays (runs of 68.20 . 103 ind. in 2005–2017, on average). This growth corresponds with general increasing of the pacific salmons abundance in the Russian Far East as the result of favorable environmental and feeding conditions in the North Pacific. General biological indices (age, body length and weight, maturity, fecundity) of mature sockeye salmon originated from the Zhupanova River are presented on the data of commercial catches in the sea in 1999–2017. The sockeye salmon population from this river has 11 age groups. The age group 1.3 is the most abundant and associated with the age groups 1.2 and 1.4. Majority of sockeye in the catches from the Zhupanova has the age 1.3 (on average 66.2 % in 1999–2017). Besides, returns of underyearlings with age 0.2, 0.3, and 0.4, and the fish with age 2.2, 2.3, 2.4, 3.2, and 3.3 are detected. The body length and weight are similar for all age groups of sockeye salmon: for males/females the mean length is 57.56/57.70 cm, mean weight is 2.69/2.62 kg. The mean males:females ratio is 44.7 : 55.3. The mean absolute fecundity is 4121 eggs. In opposite of sockeye salmon in some rivers of East Kamchatka, the population of the Zhupanova has no negative year-to-year trend of the body length or weight.


1951 ◽  
Vol 8b (4) ◽  
pp. 241-263 ◽  
Author(s):  
William S. Hoar

In fresh water, chum and pink salmon fry form schools or mills, are constantly active both day and night, show positive rheotaxis and move into fast water. This activity takes them into the swiftest currents. At night loss of visual and contact stimuli reduces the intensity of the rheotactic response and results in downstream movement. An active swimming downstream occurs only with unusually high temperatures. Coho salmon fry occupy and defend territory, maintain definite positions in relation to particular objects in their environment, show a less marked tendency to move into fast water and are quiet at night. They are thus displaced downstream to a much lesser degree. Coho smolts, in contrast to the fry, demonstrate a lowered threshold for stimulation both day and night, a tendency to aggregate and a lessening in territory behaviour. During the day smolts group in deeper water or under cover. At night they rise to the surface and manifest increased activity which, in swift water, will result in displacement seaward. Pronounced changes in temperature modify these reactions. Sudden elevation of water levels hastens the downstream displacement.


ABSTRACT The Lewis and Clark expedition crossed the Continental Divide in 1805 on the way west to the Pacific Ocean. Based on journal entries, members of the expedition probably encountered two species of resident salmonids and four of the six species of anadromous salmonids and steelhead (Family Salmonidae, genus <em>Oncorhynchus</em>). The salmonid species were called common salmon (now known as Chinook salmon <em>O. tshawytscha</em>), red charr (sockeye salmon <em>O. nerka</em>), white salmon trout (coho salmon [also known as silver salmon] <em>O. kisutch</em>), salmon trout (steelhead <em>O. mykiss</em>), and spotted trout (cutthroat trout <em>O. clarkii</em>). There was no evidence of the expedition encountering pink salmon <em>O. gorbuscha</em>, chum salmon <em>O. keta</em>, or species of true char <em>Salvelinus</em> spp. Common fishes procured from Indian tribes living along the lower Columbia River included eulachon <em>Thaleichthys pacificus</em> and white sturgeon <em>Acipenser transmontanus</em>. The identity of three additional resident freshwater species is questionable. Available descriptions suggest that what they called mullet were largescale sucker <em>Catostomus macrocheilus</em>, and that chubb were peamouth <em>Mylocheilus caurinus</em>. The third questionable fish, which they called bottlenose, was probably mountain whitefish <em>Prosopium williamsoni</em>, although there is no evidence that the species was observed in the Columbia River drainage. Missing from the species list were more than 20 other fishes known to Sahaptin-speaking people from the mid-Columbia region. More complete documentation of the icthyofauna of the Pacific Northwest region did not occur until the latter half of the 19th century. However, journals from the Lewis and Clark expedition provide the first documentation of Columbia River fishes.


Sign in / Sign up

Export Citation Format

Share Document