Permanent Sedimentation of Nitrogen, Phosphorus, and Organic Carbon in a High Arctic Lake

1978 ◽  
Vol 35 (8) ◽  
pp. 1089-1094 ◽  
Author(s):  
L. de March

The sediments of Char Lake, Resolute, Northwest Territories, were studied to determine storage rates of nitrogen, phosphorus, and organic carbon which could be compared with retention estimates of N and P and primary production and respiration estimates for organic C. The storage rate for P (0.018 g∙m−2∙yr−1) was 129% of measured retention, storage of N (0.087 g∙m−2∙yr−1) was 43% of measured retention, and the 1 g∙m−2∙yr−1 storage estimate for organic C was 18% of the difference between primary production and respiration. Lacustrine sediments were found to be very unevenly distributed with accumulations from 7 cm to an estimated 3 m in the last 6200 yr and to vary in N, P, and organic C concentrations from place to place. Key words: sedimentation, nutrient budgets, arctic, lake, carbon, nitrogen, phosphorus

1985 ◽  
Vol 42 (4) ◽  
pp. 797-808 ◽  
Author(s):  
S. C. Whalen ◽  
J. C. Cornwell

Budgets for nitrogen, phosphorus, and organic carbon in Toolik Lake, Alaska, were assembled from data collected during 1977–81. The annual total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) loads to the Sake were 8557, 290, and 4.64 mmol∙m−2. Inlet streams were the major source of nutrients to the lake, as direct precipitation provided only 1, 2, and 5%, respectively, of the annual TOC, TN, and TP loads to the lake. Up to 30% of the annual N and P inputs to the lake from riverine sources occurred during the first 10 d of stream flow following breakup when cold water temperatures and snow-covered ice limited primary production. Due to the short water renewal time (0.5 yr), efficiency of nutrient retention was poor and 90, 82, and 70% of the annual TOC, TN, and TP inputs to the lake were discharged at the outlet stream. Regeneration within the water column supplied 40–66% and 68–78% of the N and P necessary for measured primary production. Yearly accumulation rates for C, N, and P in the sediment were about 220, 21.0, and 1.75 mmol∙m−2. Phosphorus remineralized within the sediment was completely retained due to adsorption onto Fe oxide minerals in the oxidizing surface layer. Annual rates of release of C and N to the overlying water column were 110 and 11.5–22.2 mmol∙m2. Mass balance considerations showed no serious errors in estimates of any terms of the annual sediment and water column N, P, and organic C budgets.


2007 ◽  
Vol 69 (4) ◽  
pp. 484-494 ◽  
Author(s):  
Andreas C. Bryhn ◽  
Dag O. Hessen ◽  
Thorsten Blenckner

Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 345 ◽  
Author(s):  
G. D. Schwenke ◽  
D. R. Mulligan ◽  
L. C. Bell

At Weipa, in Queensland, Australia, sown tree and shrub species sometimes fail to establish on bauxite-mined land, possibly because surface-soil organic matter declines during soil stripping and replacement. We devised 2 field experiments to investigate the links between soil rehabilitation operations, organic matter decline, and revegetation failure. Experiment 1 compared two routinely practiced operations, dual-strip (DS) and stockpile soil, with double-pass (DP), an alternative method, and subsoil only, an occasional result of the DS operation. Other treatments included variations in stripping-time, ripping-time, fertiliser rate, and cultivation. Dilution of topsoil with subsoil, low-grade bauxite, and ironstone accounted for the 46% decline of surface-soil (0–10 cm) organic C in DS compared with pre-strip soil. In contrast, organic C in the surface-soil (0–10 cm) of DP plots (25.0 t/ha) closely resembled the pre-strip area (28.6 t/ha). However, profile (0–60 cm) organic C did not differ between DS (91.5 t/ha), DP (107 t/ha), and pre-strip soil (89.9 t/ha). Eighteen months after plots were sown with native vegetation, surface-soil (0–10 cm) organic C had declined by an average of 9% across all plots. In Experiment 2, we measured the potential for post-rehabilitation decline of organic matter in hand-stripped and replaced soil columns that simulated the DS operation. Soils were incubated in situ without organic inputs. After 1 year’s incubation, organic C had declined by up to 26% and microbial biomass C by up to 61%. The difference in organic C decline between vegetated replaced soils (Expt 1) and bare replaced soils (Expt 2) showed that organic inputs affect levels of organic matter more than soil disturbance. Where topsoil was replaced at the top of the profile (DP) and not ploughed, inputs from volunteer native grasses balanced oxidation losses and organic C levels did not decline.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 296 ◽  
Author(s):  
D. Das ◽  
B. S. Dwivedi ◽  
V. K. Singh ◽  
S. P. Datta ◽  
M. C. Meena ◽  
...  

Decline in soil organic carbon (SOC) content is considered a key constraint for sustenance of rice–wheat system (RWS) productivity in the Indo-Gangetic Plain region. We, therefore, studied the effects of fertilisers and manures on SOC pools, and their relationships with crop yields after 18 years of continuous RWS. Total organic C increased significantly with the integrated use of fertilisers and organic sources (from 13 to 16.03gkg–1) compared with unfertilised control (11.5gkg–1) or sole fertiliser (NPKZn; 12.17gkg–1) treatment at 0–7.5cm soil depth. Averaged across soil depths, labile fractions like microbial biomass C (MBC) and permanganate-oxidisable C (PmOC) were generally higher in treatments that received farmyard manure (FYM), sulfitation pressmud (SPM) or green gram residue (GR) along with NPK fertiliser, ranging from 192 to 276mgkg–1 and from 0.60 to 0.75gkg–1 respectively compared with NPKZn and NPK+cereal residue (CR) treatments, in which MBC and PmOC ranged from 118 to 170mgkg–1 and from 0.43 to 0.57gkg–1 respectively. Oxidisable organic C fractions revealed that very labile C and labile C fractions were much larger in the NPK+FYM or NPK+GR+FYM treatments, whereas the less-labile C and non-labile C fractions were larger under control and NPK+CR treatments. On average, Walkley–Black C, PmOC and MBC contributed 29–46%, 4.7–6.6% and 1.16–2.40% towards TOC respectively. Integrated plant nutrient supply options, except NPK+CR, also produced sustainable high yields of RWS.


Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 293 ◽  
Author(s):  
RC Dalal ◽  
RJ Mayer

Distribution of soil organic carbon in sand-, silt- and clay-size fractions during cultivation for periods ranging from 20 to 70 years was studied in six major soils used for cereal cropping in southern Queensland. Particle-size fractions were obtained by dispersion in water using cation exchange resin, sieving and sedimentation. In the soils' virgin state no single particle-size fraction was found to be consistently enriched as compared to the whole soil in organic C in all six soils, although the largest proportion (48%) of organic C was in the clay-size fraction; silt and sand-size fractions contained remaining organic C in equal amounts. Upon cultivation, the amounts of organic C declined from all particle-size fractions in most soils, although the loss rates differed considerably among different fractions and from the whole soil. The proportion of the sand-size fraction declined rapidly (from 26% to 12% overall), whereas that of the clay-size fraction increased from 48% to 61% overall. The proportion of silt-size organic C was least affected by cultivation in most soils. It was inferred, therefore, that the sand-size organic matter is rapidly lost from soil, through mineralization as well as disintegration into silt-size and clay-size fractions, and that the clay fraction provides protection for the soil organic matter against microbial and enzymic degradation.


Sign in / Sign up

Export Citation Format

Share Document