Genetic Identification of Sea Lamprey (Petromyzon marinus) Populations from the Lake Superior Basin

1981 ◽  
Vol 38 (12) ◽  
pp. 1832-1837 ◽  
Author(s):  
Charles C. Krueger ◽  
George R. Spangler

Sea lamprey (Petromyzon marinus) ammocoetes collected from 18 locations within Lake Superior were electrophoretically analyzed for genetic variability at 25 enzyme loci. Analysis by F statistics and χ2 tests indicated that a significant degree of population structuring occurs among lampreys from Lake Superior. Cluster analysis of genetic distances generally grouped collections that were in close geographical proximity to each other. A weak but significant correlation was detected between genetic and geographic distances. It was concluded that multiple populations of sea lamprey occur within Lake Superior. If this is the case, then sea lamprey control emphasis might shift from individual streams to population regions to minimize the rate of reestablishment subsequent to chemical treatment. It may also be wise to avoid the planting of fish species with migratory habits so as to prevent the passive transport of adult lampreys out of their population areas.Key words: lamprey, Petromyzon, genetics, population identification, Lake Superior, electrophoresis, management




2005 ◽  
Vol 62 (10) ◽  
pp. 2354-2361 ◽  
Author(s):  
Jeffrey C Jorgensen ◽  
James F Kitchell

Fish community objectives for Lake Superior call for restoration such that it resembles its historical species composition, to the extent possible, yet allow for supplementation of naturalized Pacific salmonids (Oncorhynchus spp.). To achieve these goals, managers strive to control the sea lamprey (Petromyzon marinus) to levels that cause insignificant (<5%) mortality to host species. While control efforts have been successful, sea lamprey size has increased during the control period. We analyzed long-term sea lamprey size trends and found a significant increase from 1961 to 2003 (F = 36.76, p < 0.001, R2 = 0.473). A local regression revealed two significant size increase periods. We used Bayesian model averaging to find the relationship between sea lamprey size and the stocking of salmonids (lean lake trout (Salvelinus namaycush) and Pacific salmon). Bayesian model averaging identified 91 models, and several regressors were common features in many of the models. Sea lamprey weight was related to stocked lake trout lagged 3, 9, 11, and 13 years, and stocked Pacific salmon lagged 4 years. If sea lampreys can achieve larger sizes attached to Pacific salmonid hosts, and thus inflict more damage, there may be a trade-off for managers in achieving the fish community objectives for Lake Superior.



1981 ◽  
Vol 38 (12) ◽  
pp. 1708-1714 ◽  
Author(s):  
Peter F. Brussard ◽  
Marjorie Collings Hall ◽  
Janet Wright

We have examined genetic differentiation at 23 loci in 12 populations of sea lamprey, Petromyzon marinus, by means of starch gel electrophoresis. Based on two measures of overall genetic distance and two clustering methods, our analysis shows that there are three genetically distinct groups of lamprey in eastern North America: (1) anadromous populations plus those in Lake Champlain, (2) populations in Lake Erie and the upper Great Lakes, and (3) populations in Lake Ontario and three interior New York Lakes (Cayuga, Seneca, and Oneida). Analysis of population subdivision using contiguity partitions and simultaneous test procedures (STP) confirms the above conclusions and offers additional insight into the genetic structure of lamprey in this area.Key words: sea lamprey, Petromyzon marinus; genetic variation, electrophoresis, population structuring



1980 ◽  
Vol 37 (11) ◽  
pp. 2057-2062 ◽  
Author(s):  
A. H. Lawrie ◽  
W. MacCallum

The Lake Superior lake trout (Salvelinus namaycush) population is being rebuilt following its collapse in the early 1950s. Estimates are presented of the contributions to this recovery provided directly by the artificial recruitment of hatchery fish, a demonstrable amelioration in mortality rates and a resurgence, lately, of natural recruitment. Of the increased lake trout abundance, 55% on the average was owing to trebling the planting density, 40% to improved survival, and 5% to increasing recruitment of native lake trout. The precise contribution of the sea lamprey (Petromyzon marinus) control program could not be defined for lack of sufficient early data.Key words: lake trout, sea lamprey, rehabilitation, natural recruitment, hatchery stocking



1980 ◽  
Vol 37 (11) ◽  
pp. 2063-2073 ◽  
Author(s):  
Richard L. Pycha

Total mortality rates of lake trout (Salvelinus namaycush) of age VII and older from eastern Lake Superior were estimated from catch curves of age distributions each year in 1968–78. The instantaneous rate of total mortality Z varied from 0.62 to 2.31 in close synchrony with sea lamprey (Petromyzon marinus) wounding rates on lake trout. The regression of transformed Z on the index of lamprey wounding, accounted for over 89% of the variation in lake trout mortality (r2 = 0.893). An iterative method of estimating rates of exploitation u, instantaneous rates of fishing mortality F, K (a constant relating sample catch per unit effort to population size), instantaneous normal natural mortality rate M, and instantaneous rate of mortality due to sea lamprey predation L from the sample catch per unit effort and total catch by the fishery is presented. A second method using the results of a 1970–71 tagging study to estimate the mean F in 1970–77 yielded closely similar results to the above and is presented as corroboration. The estimates of u, F, and M appear to be reasonable. F ranged from 0.17 in 1974 to 0.42 in 1969 and M was estimated at 0.26. L varied from 0.21 in 1974 to 1.70 in 1968. Management implications of various policies concerning sea lamprey control, exploitation, and stocking are discussed.Key words: lake trout, sea lamprey, lamprey control, mortality, predation, Lake Superior, fishery, management



2005 ◽  
Vol 62 (10) ◽  
pp. 2343-2353 ◽  
Author(s):  
Jeffrey C Jorgensen ◽  
James F Kitchell

Landlocked Lake Superior sea lampreys (Petromyzon marinus) cause a significant but uncertain amount of mortality on host species. We used a sea lamprey bioenergetics model to examine the scope of host sizes vulnerable to death as a consequence of sea lamprey feeding and incorporated the bimodal lake-ward migration of parasitic sea lampreys. At their peak feeding rate and maximum size (P = 1.0, proportion of maximum consumption), spring migrants were capable of killing lean lake trout (Salvelinus namaycush) hosts ≤ 2.0 kg, which was larger than fall migrants (1.8 kg). Spring migrants feeding on Pacific salmon (coho (Oncorhynchus kisutch), Chinook (Oncorhynchus tshawytscha), and steelhead (Oncorhynchus mykiss)) killed hosts ≤ 2.0 kg, but fall migrants killed hosts as large as 2.8 kg. Although there is no direct empirical evidence, bioenergetics modeling suggests that it is plausible that some of the largest sea lampreys in Lake Superior spent more than one summer as parasites. Two-summer parasites readily attained sizes of sea-run adult anadromous sea lampreys and killed hosts from 3 to >5.5 kg in size. The maximum upper limit number of 2-kg hosts killed by two-summer parasites was nearly twice that of one-summer parasites.



1980 ◽  
Vol 37 (11) ◽  
pp. 2074-2080 ◽  
Author(s):  
Bruce L. Swanson ◽  
Donald V. Swedberg

The Gull Island Reef lake trout (Salvelinus namaycush) population was one of the few in Lake Superior that was not annihilated by the combined effects of excessive fishing and sea lamprey (Petromyzon marinus) predation. Following control of the lamprey in the early 1960s, this population of lake trout began a slow but steady increase in the average age and numbers of lake trout. Total annual mortality rates for spawning lake trout were 32% for age VI fish, 48% for ages VII–VIII, and 75% for ages IX and older. These total mortality rates included a 7.3% exploitation rate u, a 20% natural mortality n, and annual lamprey-induced mortalities of 6% for ages V–VI, 24%, for ages VII–VIII, and 56% for ages IX and older fish. The estimated number of lake trout eggs deposited annually on Gull Island Reef from 1964 to 1979 ranged from 3.3 million eggs in 1965 to 28 million eggs in 1979, with a mean of 9 million eggs per year. At present levels of lamprey predation, the estimated egg to spawning fish return rate on Gull Island Reef is 0.18%.Key words: lake trout, sea lamprey, survival, population structure, egg deposition



2017 ◽  
Vol 100 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Sara K. Moses ◽  
Christine N. Polkinghorne ◽  
William P. Mattes ◽  
Kimberly M. Beesley


1980 ◽  
Vol 37 (11) ◽  
pp. 1827-1834 ◽  
Author(s):  
H. A. Purvis

Sea lamprey (Petromyzon marinus) ammocoetes of known age were confined in three locations to determine the effects of temperature on the incidence of metamorphosis. Sixty ammocoetes were held in each of Lake Superior, the Big Garlic River, and in an aquarium at room temperature for each of 4 yr. The highest incidence of metamorphosis (75–100%) occurred at 20–21 °C (aquarium), an intermediate rate (46–76%) at 14–16 °C (Big Garlic River), and the lowest (5–10%) at 7–11 °C (Lake Superior). Density appeared to be the dominant factor in regulating the length of larval and transformed sea lampreys. Mean lengths of larval and transformed sea lampreys increased markedly after stream treatments with selective lampricides. Prediction of lengths at which metamorphosis occurs in re-established populations of sea lampreys is uncertain because of variability in growth rates. Initial metamorphosis in a year-class is dependent on growth rates of ammocoetes. Because of wide variation in growth rates, metamorphosis may begin at age III among fast-growing populations and not until age VII among slow-growing populations.Key words: Petromyzon marinus, sea lamprey; metamorphosis, age, length, Great Lakes





Sign in / Sign up

Export Citation Format

Share Document