Empirical Prediction of Crustacean Zooplankton Biomass and Profundal Macrobenthos Biomass in Lakes

1984 ◽  
Vol 41 (3) ◽  
pp. 439-445 ◽  
Author(s):  
John Mark Hanson ◽  
Robert Henry Peters

We used data taken from the literature to develop and compare several estimators of crustacean zooplankton biomass (49 lakes) and profundal macrobenthos biomass (38 lakes). Both mean zooplankton biomass (r2 = 0.72, P < 0.001) and mean profundal macrobenthos biomass (r2 = 0.48, P < 0.001) correlated better with mean total phosphorus concentration than with Secchi depth, mean depth, maximum depth, or lake surface area. Mean total phosphorus concentration was also superior to mean chlorophyll a concentration (r2 = 0.57, P < 0.001) as an estimator of zooplankton biomass, but data were insufficient to evaluate chlorophyll a concentration as an estimator of macrobenthos biomass. Inclusion of maximum depth as a variable in a multiple regression resulted in a slight but significant (P < 0.030) improvement in the zooplankton–total phosphorus relationship (R2 = 0.75, P < 0.001). Inclusion of lake surface area as a variable in a multiple regression significantly (P < 0.001) improved the predictive power of the profundal macrobenthos–total phosphorus relationship (R2 = 0.59, P < 0.001).


2001 ◽  
Vol 58 (2) ◽  
pp. 421-436 ◽  
Author(s):  
E E Prepas ◽  
B Pinel-Alloul ◽  
D Planas ◽  
G Méthot ◽  
S Paquet ◽  
...  

Eleven headwater lakes in Alberta's Boreal Plain were monitored for nutrients and plankton 2 years before and 2 years after variable watershed harvesting (harvesting mean 15%, range 0-35%). After harvesting, variations in annual precipitation resulted in lake water residence times that differed by an order of magnitude from one year to the next. During the first posttreatment year, total phosphorus concentrations increased (overall 40%) in most lakes; however, response was most consistent in lakes that were shallow and the water column mixed or weakly thermally stratified. Chlorophyll a, cyanobacteria (Aphanizomenon-Anabaena), and cyanotoxins (microcystin-LR) increased after harvesting, primarily in shallow lakes. Zooplankton abundance and biomass decreased after harvesting, particularly in stratified lakes where edible phytoplankton biomass declined. In the weakly or nonstratified lakes, declines in zooplankton biomass were associated with higher cyanobacterial biomass and cyanotoxins. Posttreatment change in total phosphorus concentration was strongly related to weather (greatest response in a wet year) and relative drainage basin size (drainage basin area to lake volume, r2 = 0,78, P << 0,01). There was no evidence that buffer strip width (20, 100, and 200 m) influenced lake response. These results suggest that activities within the entire watershed should be the focus of catchment-lake interactions.





1975 ◽  
Vol 32 (9) ◽  
pp. 1519-1531 ◽  
Author(s):  
P. J. Dillon ◽  
F. H. Rigler

A general technique is presented for calculating the capacity of a lake for development based on quantifiable relationships between nutrient inputs and water quality parameters reflecting lake trophic status. Use of the technique for southern Ontario lakes is described. From the land use and geological formations prevalent in a lake’s drainage basin, the phosphorus exported to the lake in runoff water can be calculated, which, when combined with the input directly to the lake’s surface in precipitation and dry fallout, gives a measure of the natural total phosphorus load. From the population around the lake, the maximum artificial phosphorus load to the lake can be calculated and, if necessary, modified according to sewage disposal facilities used. The sum of the natural and artificial loads can be combined with a measure of the lake’s morphometry expressed as the mean depth, the lake’s water budget expressed as the lake’s flushing rate, and the phosphorus retention coefficient of the lake, a parameter dependent on both the lake’s morphometry and water budget, to predict springtime total phosphorus concentration in the lake. Long-term average runoff per unit of land area, precipitation, and lake evaporation data for Ontario provide a means of calculating the necessary water budget parameters without expensive and time-consuming field measurements. The predicted spring total phosphorus concentration can be used to predict the average chlorophyll a concentration in the lake in the summer, and this, in turn, can be used to estimate the Secchi disc transparency. Thus, the effects of an increase in development on a lake’s water quality can be predicted. Conversely, by setting limits for the "permissible" summer average chlorophyll a concentration or Secchi disc transparency, the "permissible" total phosphorus concentration at spring overturn can be calculated. This can be translated into "permissible" artificial load, which can then be expressed as total allowable development. This figure can be compared to the current quantity of development and recommendations made concerning the desirability of further development on the lake.



1987 ◽  
Vol 44 (2) ◽  
pp. 382-389 ◽  
Author(s):  
N. D. Yan ◽  
G. L. Mackie

Holopedium gibberum is one of the most important species of crustacean zooplankton in Canadian Shield lakes, yet satisfactory length–weight relationships (LWR's) have not been constructed from North American populations. In this report we show that, despite assertions to the contrary, weights of individual H. gibberum can be successfully predicted from body length (L) of animals measured in a nonanaesthetized, relaxed position. We use a relationship between postabdomen length and L to show that LWR's of Ontario and Scandinavian populations of H. gibberum differ. As such differences among lakes are the rule and not the exception, it is not safe to assume that published LWR's for zooplankton are widely applicable. Consideration of clutch size (CS) and a body fat index (BFI) in addition to L significantly improved estimates of the dry weight of Holopedium from Plastic Lake in central Ontario. This model provided more accurate estimates of Holopedium dry weight in 29 test lakes than the simple LWR, i.e. it had wider applicability. Predicted weights in the test lakes were further improved by consideration of lake water total phosphorus concentrations.



2000 ◽  
Vol 51 (1) ◽  
pp. 91 ◽  
Author(s):  
Simon A. Townsend

Manton River Reservoir (MRR) and Darwin River Reservoir (DRR) are two small impoundments in the Australian wet/dry tropics. Over an eight-year period, chlorophyll a concentrations in the mixed layer averaged 3.6 µg L−1 in DRR, and 7.1 µg L−1 in MRR. The seasonal pattern of chlorophyll a at MRR was influenced by wet season wash-out (February average 4.8 µg L−1 ), and dry season destratification and nutrient enrichment of the surface waters (July average 8.4 mg L−1 ). In contrast, DRR exhibited near uniform chlorophyll a concentrations over the year. The seasonal patterns of DRR and MRR chlorophyll a are typical of tropical water bodies which tend to have a smaller annual range than temperate lakes, though this can be modified by significant wash-out. Empirical evidence suggests that the phytoplankton biomass of each reservoir is phosphorus limited, relative to the potential provided by other nutrients and light energy. This conclusion is based on a regression of total phosphorus and chlorophyll a concentrations of pooled DRR and MRR data (P < 0.001; r2 = 0.90), and the high total-nitrogen to total-phosphorus concentration ratios (by weight) of 50 and 37 in DRR and MRR, respectively. Annual chlorophyll a and total phosphorus concentrations for both reservoirs are in accord with the OECD regression for temperate lakes and reservoirs.



1978 ◽  
Vol 35 (3) ◽  
pp. 300-304 ◽  
Author(s):  
W. A. Scheider

Phosphorus and hydrological budgets were constructed for four small lakes with Precambrian drainage in Algonquin Park, Ontario. Lake outflow discharge ranged from 21.7 × 105 to 177 × 105 m3∙yr−1. Annual phosphorus input to the lakes from terrestrial drainage and precipitation totaled 36.3–188 kg∙yr−1. The lakes retained 16–41% of the annual input. These data were used to test a series of models that predict the spring total phosphorus concentration in lake water and the mean summer chlorophyll a. The predicted spring phosphorus concentration agreed well with measured values (within 1.3 mg∙m−3) except where human-associated phosphorus input may have contributed to the phosphorus budget of the lake. Agreement between predicted and measured chlorophyll a was not as close. A figure of 0.48 kg P∙capita−1∙yr−1 was calculated as the human-associated supply. Key words: phosphorus budget, chlorophyll a, predictive model, Precambrian lake





1985 ◽  
Vol 42 (4) ◽  
pp. 831-835 ◽  
Author(s):  
E. T. Riley ◽  
E. E. Prepas

Data from the literature were used to calculate separate regressions of summer chlorophyll a concentration ([Chl a]) on spring total phosphorus concentration ([TP]) for lakes that remain thermally stratified during the summer and lakes that mix intermittently during the summer. Significant differences were found in the spring [TP] – summer [Chl a] relationships for the two lake types (P < 0.05). The mean ratios of summer [TP] to spring [TP] were also significantly different in stratified and mixed lakes (P < 0.001); this difference is the explanation offered for why the spring [TP] – summer [Chl a] relationships were different in stratified and mixed lakes.



1995 ◽  
Vol 52 (4) ◽  
pp. 804-815 ◽  
Author(s):  
B. K. Basu ◽  
F. R. Pick

Planktonic chlorophyll a (chl-a) concentrations in the Rideau River, Ontario showed longitudinal and seasonal variation and ranged from 2 to 19 μg∙L−1. Chlorophyll a concentrations in the river were not simply a reflection of the concentrations in the headwaters. On movement from the lentic headwaters into the lotic river waters there was usually a significant decrease in chl-a concentration. Downstream there were reaches of net increase in chl-a (sources), reaches of no change in concentration, and reaches of net decrease (sinks). Increases in concentration only occurred over reaches with retention times of 72 h or longer. No increases in chl-a concentration occurred over a reach with a retention time less than 50 h. Chlorophyll a concentration was not significantly correlated with discharge. Chlorophyll a concentration was positively related to total phosphorus concentration (R2 = 0.15, p = 0.016). About 50% of the variation in chl-a concentration could be accounted for by a combination of total phosphorus, nitrate, and soluble reactive phosphorus concentrations.



1992 ◽  
Vol 27 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Sonia Paulino Mattos ◽  
Irene Guimarães Altafin ◽  
Hélio José de Freitas ◽  
Cristine Gobbato Brandão Cavalcanti ◽  
Vera Regina Estuqui Alves

Abstract Built in 1959, Lake Paranoá, in Brasilia, Brazil, has been undergoing an accelerated process of nutrient enrichment, due to inputs of inadequately treated raw sewage, generated by a population of 600,000 inhabitants. Consequently, it shows high nutrient content (40 µg/L of total phosphorus and 1800 µg/L of total nitrogen), low transparency (0.65 m) and high levels of chlorophyll a (65 µg/L), represented mainly by Cylindrospermopsis raciborskii and sporadic bloom of Microcystis aeruginosa, which is being combatted with copper sulphate. With the absence of seasonality and a vertical distribution which is not very evident, the horizontal pattern assumes great importance in this reservoir, in which five compartments stand out. Based on this segmentation and on the identification of the total phosphorus parameter as the limiting factor for algal growth, mathematical models were developed which demonstrate the need for advanced treatment of all the sewage produced in its drainage basin. With this, it is expected that a process of restoration will be initiated, with a decline in total phosphorus concentration to readings below 25 µg/L. Additional measures are proposed to accelerate this process.



Sign in / Sign up

Export Citation Format

Share Document