Chemistry of Atmospheric Deposition, the Snowpack, and Snowmelt in the Turkey Lakes Watershed

1988 ◽  
Vol 45 (S1) ◽  
pp. s38-s46 ◽  
Author(s):  
R. G. Semkin ◽  
D. S. Jeffries

Bulk and wet-only deposition and the snowpack were monitored at the Turkey Lakes Watershed in northern Ontario over the winter and spring of 1986. Based on a comparison with snowpack and cumulative snowmelt, the bulk sampler overcollected major ions by factors ranging from 6 to 22%. Nitrate appeared to be preferentially collected by the bulk sampler relative to SO42− during snow events. Dry deposition was estimated to be 12 and 5% of total deposition forSO42− and NO3−, respectively. Ion budgets for cumulative bulk deposition and snowmelt supported the hypothesis that ion losses from the snowpack are insignificant during a winter having no melt episodes. Snowmelt was characterized by chemical fractionation of major ions; SO42− and H+ in initial meltwaters were 10 times more concentrated than the premelt snowpack. Preferential elution of ions in the snowmelt followed the sequence: SO42− > NO3− > H+ > Cl−. Snowmelt chemistry was used to predict changes in lake chemistry: H+, NO3−, and NH4+ levels should increase in lake waters; Ca2+ decreases through dilution by snowmelt; SO42− concentrations remain fairly constant.

1988 ◽  
Vol 45 (S1) ◽  
pp. s14-s25 ◽  
Author(s):  
Alain Sirois ◽  
Robert J. Vet

Daily concentrations of sulphates and nitrates in air and precipitation were measured atthe Turkey Lakes Watershed from September 1980 until December 1984. The measurement data were used to estimate wet, dry, and total deposition of sulphates and nitrates to the watershed. Over the 4 yr, the annual values of total (wet plus dry) deposition ranged from 34 to 38 (± 15%) mmol∙m−2∙yr−1 for SO42− and from 38 to 47 (± 30%) mmol∙m−2∙yr−1 for NO3−. On a molar basis, the deposition of total NO3− exceeded the deposition of total SO42− by 19%. However, when converted to equivalents, total SO42− exceeded total NO3− by 68%. Dry deposition represented approximately 15 and 25% of the total deposition of SO42− and NO3−, respectively, to the watershed. Wet and dry deposition of sulphate and nitrate was found to be highly episodic, with the top 20% of daily events delivering 60–70% of the total sulphur and nitrogen deposition to the watershed. Statistically significant seasonal cycles were found in the concentration and deposition values of most of the sulphur and nitrogen species measured at the watershed.


1987 ◽  
Vol 22 (3) ◽  
pp. 365-376
Author(s):  
C. H. Chan ◽  
L. H. Perkins

Abstract Wet deposition estimates were computed from monthly wet precipitation samples collected in the Lake Superior Basin. Sulphate and nitrogen loadings from wet precipitation corresponded to 142 and 40 thousand tonnes per year. On a percentage basis, wet deposition of sulphate and nitrogen accounted for 21% and 54%, respectively, of the total load. Atmospheric sources for other major ions ranged from 1 to 10%. Atmospheric deposition at the eastern end of Lake Superior was higher than the western end of the Basin. The relative accuracy of these estimates were examined in relation to the changes in lake chemistry in Lake Superior from 1973 to 1983.


1988 ◽  
Vol 45 (S1) ◽  
pp. s26-s37 ◽  
Author(s):  
Robert J. Vet ◽  
Alain Sirois ◽  
Dean S. Jeffries ◽  
R. G. Semkin ◽  
N. W. Foster ◽  
...  

Four different types of atmospheric deposition measurements were made at the Turkey Lakes Watershed from 1981 to 1984. They included weekly and variable period bulk deposition measurements. The resulting annual and seasonal deposition estimates from the four methods were compared for numerical and statistical differences. Several results unexpected from the theory of the measurement methods appeared in the comparison: (1) one of the bulk deposition measurements produced lower deposition of acid-related ions than the two wet-only measurements and (2) the monthly wet-only measurements produced higher deposition of sulphate than the two bulk deposition data sets (by 6 and 19%). Several results were consistent with the theory of the measurements: (1) the daily wet-only measurements produced deposition values lower than the weekly bulk deposition measurements and (2) the wet-plus-dry deposition measurements produced higher estimates of sulphate and nitrate deposition than the two bulk data sets (15 – 35% higher). Laboratory biases appeared to be partially responsible for some of the differences found in the comparison.


2021 ◽  
Vol 758 ◽  
pp. 143639 ◽  
Author(s):  
Charles Marty ◽  
Louis Duchesne ◽  
Suzanne Couture ◽  
Christian Gagnon ◽  
Daniel Houle

2016 ◽  
Author(s):  
Karin Haglund ◽  
Björn Claremar ◽  
Anna Rutgersson

Abstract. The shipping sector contributes significantly to increasing emissions of air pollutants. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and deposition of sulphur, nitrogen and particulate matter from the international maritime sector in the Baltic Sea and the North Sea have been made for the years 2009 to 2013. In some areas in the Baltic Sea region the contribution of sulphur dioxide, nitrogen oxide and nitrogen dioxide from international shipping represented up to 80 % of the total near surface concentration of the pollutants. Contributions from shipping of PM2,5 and PM10 were calculated to a maximum of 21 % and 13 % respectively. The contribution of wet deposition of sulphur from shipping was maximum 29 % of the total wet deposition, and for dry deposition the contribution from shipping was maximum 84 %. The highest percentage contribution of wet deposition of nitrogen from shipping reached 28 % and for dry deposition 47 %. The highest concentrations and deposition of the pollutants in the study were found near large ports and shipping lanes. High concentrations were also found over larger areas at sea and over land where many people are exposed. With enhanced regulations for sulphur content in maritime fuel, the cleaning of exhausts through scrubbers has become a possible economic solution. Wet scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown. The resulting potential of future acidification in the Baltic Sea, both from atmospheric deposition and from open-loop scrubber water along the shipping lanes, based on different assumptions about sulphur content in fuel and scrubber usage has been assessed. Shipping is expected to increase globally and in the Baltic Sea region, deposition of sulphur due to shipping will depend on traffic density, emission regulations and technology choices for the emission controls. To evaluate future changes scenarios are developed considering the amount of scrubber technology used. The increase in deposition for the different scenarios differs slightly for the basins in the Baltic Sea. The proportion of ocean acidifying sulphur from ships increases when taking scrubber water into account and the major reason to increasing acidifying nitrogen from ships are due to increasing ship traffic. This study also generates a database of scenarios for atmospheric deposition and scrubber exhaust from the period 2011 to 2050.


2019 ◽  
Author(s):  
Ke Dong ◽  
Cheolwoon Woo ◽  
Naomichi Yamamoto

Abstract. Plants disperse spores, pollen, and fragments into the atmosphere. The emitted plant particles return to the pedosphere by sedimentation (dry deposition) and/or by precipitation (wet deposition) and constitute part of the global cycle of substances. However, little is known regarding the taxonomic diversities and flux densities of plant particles deposited from the atmosphere. Here, plant assemblages were examined in atmospheric deposits collected in Seoul in South Korea. A custom-made automatic sampler was used to collect dry and wet deposition samples for which plant assemblages and quantities were determined using high-throughput sequencing and quantitative PCR with universal plant-specific primers targeting the internal transcribed spacer 2 (ITS2) region. Dry deposition was dominant for atmospheric deposition of plant particles (87 %). The remaining 13 % was deposited by precipitation, i.e., wet deposition, via rainout (in-cloud scavenging) and/or washout (below-cloud scavenging). Plant assemblage structures did not differ significantly between dry and wet deposition, indicating that washout, which is likely taxon-independent, predominated rainout, which is likely taxon-dependent, for wet deposition of atmospheric plant particles. A small number of plant genera were detected only in wet deposition, indicating that they might be specifically involved in precipitation through acting as nucleation sites in the atmosphere. Future interannual monitoring will control for the seasonality of atmospheric plant assemblages observed at our sampling site. Future global monitoring is also proposed to investigate geographical differences and investigate whether endemic species are involved in plant-mediated bioprecipitation in regional ecological systems.


2014 ◽  
Vol 11 (19) ◽  
pp. 5621-5635 ◽  
Author(s):  
C. Guieu ◽  
C. Ridame ◽  
E. Pulido-Villena ◽  
M. Bressac ◽  
K. Desboeufs ◽  
...  

Abstract. By bringing new nutrients and particles to the surface ocean, atmospheric deposition impacts biogeochemical cycles. The extent to which those changes are modifying the carbon balance in oligotrophic environments such as the Mediterranean Sea that receives important Saharan dust fluxes is unknown. The DUNE (DUst experiment in a low Nutrient, low chlorophyll Ecosystem) project provides the first attempt to evaluate the changes induced in the carbon budget of a large body of oligotrophic waters after simulated Saharan dust wet or dry deposition events, allowing us to measure (1) the metabolic fluxes while the particles are sinking and (2) the particulate organic carbon export. Here we report the results for the three distinct artificial dust seeding experiments simulating wet or dry atmospheric deposition onto large mesocosms (52 m3) that were conducted in the oligotrophic waters of the Mediterranean Sea in the summers of 2008 and 2010. Although heterotrophic bacteria were found to be the key players in the response to dust deposition, net primary production increased about twice in case of simulated wet deposition (that includes anthropogenic nitrogen). The dust deposition did not produce a shift in the metabolic balance as the tested waters remained net heterotrophic (i.e., net primary production to bacteria respiration ratio <1) and in some cases the net heterotrophy was even enhanced by the dust deposition. The change induced by the dust addition on the total organic carbon pool inside the mesocosm over the 7 days of the experiments, was a carbon loss dominated by bacteria respiration that was at least 5–10 times higher than any other term involved in the budget. This loss of organic carbon from the system in all the experiments was particularly marked after the simulation of wet deposition. Changes in biomass were mostly due to an increase in phytoplankton biomass but when considering the whole particulate organic carbon pool it was dominated by the organic carbon aggregated to the lithogenic particles still in suspension in the mesocosm at the end of the experiment. Assuming that the budget is balanced, the dissolved organic carbon (DOC) pool was estimated by the difference between the total organic carbon and the particulate organic carbon (POC) pool. The partitioning between dissolved and particulate organic carbon was dominated by the dissolved pool with a DOC consumption over 7 days of ∼1 μmol C L−1 d−1 (dry deposition) to ∼2–5 μmol C L−1 d−1 (wet deposition). This consumption in the absence of any allochthonous inputs in the closed mesocosms meant a small <10% decrease of the initial DOC stock after a dry deposition but a ∼30–40% decrease of the initial DOC stock after wet deposition. After wet deposition, the tested waters, although dominated by heterotrophy, were still maintaining a net export (corrected from controls) of particulate organic carbon (0.5 g in 7 days) even in the absence of allochthonous carbon inputs. This tentative assessment of the changes in carbon budget induced by a strong dust deposition indicates that wet deposition by bringing new nutrients has higher impact than dry deposition in oligotrophic environments. In the western Mediterranean Sea, the mineral dust deposition is dominated by wet deposition and one perspective of this work is to extrapolate our numbers to time series of deposition during similar oligotrophic conditions to evaluate the overall impact on the carbon budget at the event and seasonal scale in the surface waters of the northwestern Mediterranean Sea. These estimated carbon budgets are also highlighting the key processes (i.e., bacterial respiration) that need to be considered for an integration of atmospheric deposition in marine biogeochemical modeling.


1993 ◽  
Vol 23 (8) ◽  
pp. 1603-1616 ◽  
Author(s):  
Gary M. Lovett ◽  
Steven E. Lindberg

Wet deposition of nitrogen compounds was measured and dry and cloud water deposition were estimated at 11 forested sites in North America and one site in Europe. Dry deposition was a significant pathway of N input to all the forests, averaging 46% of the total deposition. At most of these sites, NH4+ was the dominant form of fixed N in the air, but HNO3 vapor dominated the dry deposition of N. Coarse-particle deposition was often important, but fine-particle deposition usually contributed only a small amount of the dry-deposited N. The deposition rates of inorganic N, which ranged between 4.8 and 27 kg N•ha−1•year−1, were generally much higher than has been reported by other studies measuring only wet or bulk deposition. The highest deposition rates were at the high-elevation sites in the southeastern and northeastern United States and much of the deposition at these sites was attributed to cloud water. Throughfall and stemflow (TF + SF) flux was also measured at all sites, and the net canopy exchange (NCE = (TF + SF)–total deposition) was found to be negative (indicating consumption of N in the canopy) for NH4+ and NO3−, and positive (indicating canopy release) for organic N. Past reports of canopy release of NO3− can probably be attributed to washoff of dry-deposited NO3− species. Consumption of inorganic N in the canopy ranged from 1 to 12 kg N•ha−1•year−1, and was highest in the spruce and spruce–fir stands. When organic N was included in the canopy N balance, the net canopy uptake of N was generally < 15% of the total system N requirement. Total N deposition was a linear function of wet deposition for low-elevation sites, and dry deposition was a linear function of the net throughfall flux for NO3−.


2014 ◽  
Vol 8 (1) ◽  
pp. 135-147 ◽  
Author(s):  
Mary M. Lynam ◽  
J. Timothy Dvonch ◽  
Naima L. Hall ◽  
Masako Morishita ◽  
James A. Barres

2014 ◽  
Vol 14 (20) ◽  
pp. 11065-11092 ◽  
Author(s):  
X. Hu ◽  
D. Li ◽  
H. Huang ◽  
S. Shen ◽  
E. Bou-Zeid

Abstract. The atmospheric transport and ground deposition of radioactive isotopes 131I and 137Cs during and after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident (March 2011) are investigated using the Weather Research and Forecasting-Chemistry (WRF-Chem) model. The aim is to assess the skill of WRF in simulating these processes and the sensitivity of the model's performance to various parameterizations of unresolved physics. The WRF-Chem model is first upgraded by implementing a radioactive decay term into the advection–diffusion solver and adding three parameterizations for dry deposition and two parameterizations for wet deposition. Different microphysics and horizontal turbulent diffusion schemes are then tested for their ability to reproduce observed meteorological conditions. Subsequently, the influence of emission characteristics (including the emission rate, the gas partitioning of 131I and the size distribution of 137Cs) on the simulated transport and deposition is examined. The results show that the model can predict the wind fields and rainfall realistically and that the ground deposition of the radionuclides can also be captured reasonably well. The modeled precipitation is largely influenced by the microphysics schemes, while the influence of the horizontal diffusion schemes on the wind fields is subtle. However, the ground deposition of radionuclides is sensitive to both horizontal diffusion schemes and microphysical schemes. Wet deposition dominated over dry deposition at most of the observation stations, but not at all locations in the simulated domain. To assess the sensitivity of the total daily deposition to all of the model physics and inputs, the averaged absolute value of the difference (AAD) is proposed. Based on AAD, the total deposition is mainly influenced by the emission rate for both 131I and 137Cs; while it is not sensitive to the dry deposition parameterizations since the dry deposition is just a minor fraction of the total deposition. Moreover, for 131I, the deposition is moderately sensitive (AAD between 10 and 40% between different runs) to the microphysics schemes, the horizontal diffusion schemes, gas-partitioning and wet deposition parameterizations. For 137Cs, the deposition is very sensitive (AAD exceeding 40% between different runs) to the microphysics schemes and wet deposition parameterizations, but moderately sensitive to the horizontal diffusion schemes and the size distribution.


Sign in / Sign up

Export Citation Format

Share Document