Downstream migrations of juvenile Pacific salmon (Oncorhynchus spp.) in a glacial transboundary river

1997 ◽  
Vol 54 (12) ◽  
pp. 2837-2846 ◽  
Author(s):  
Michael L Murphy ◽  
K V Koski ◽  
J Mitchel Lorenz ◽  
John F Thedinga

Migrations of juvenile Pacific salmon (Oncorhynchus spp.) in the glacial Taku River (seventh order) were studied to assess movement from upriver spawning areas (in British Columbia) into lower-river rearing areas (in Alaska). Differences between fyke-net catches in the river and seine catches in the river's estuary indicated that many downstream migrants remained in the lower river instead of migrating to sea. In particular, age-0 coho salmon (O. kisutch) and chinook salmon (O. tshawytscha) moved downriver from May to November but were not caught in the estuary. Age-0 sockeye salmon (O. nerka), coho presmolts, and other groups delayed entry into the estuary after moving downriver. We tagged groups of juvenile coho (ages 0-2) from the fyke net with coded-wire to determine when they left the river. One-third of all tags recovered from sport and commercial fisheries occurred 2-3 years later, showing that many coho remained in fresh water for 1-2 years after moving to the lower river. Lower-river areas of large glacial rivers like the Taku River can provide essential rearing habitat for juvenile salmon spawned upriver and are important to consider in integrated whole-river management of transboundary rivers.

Abstract.—Upon entering marine waters, juvenile Pacific salmon <em>Oncorhynchus </em>spp. depend on feeding at high and sustained levels to achieve growth necessary for survival. In the last decade, several concurrent studies have been examining the food habits and feeding intensity of juvenile Pacific salmon in the shelf regions from California to the northern Gulf of Alaska. In this paper, we compared results from feeding studies for all five species of juvenile salmon (Chinook salmon <em>O. tshawytscha</em>, coho salmon <em>O. kisutch</em>, chum salmon <em>O. keta, </em>sockeye salmon <em>O. nerka</em>, and pink salmon <em>O. gorbuscha</em>) between 2000 and 2002, years when these regions were sampled extensively. Within these years, we temporally stratified our samples to include early (May–July) and late (August–October) periods of ocean migration. Coho and Chinook salmon diets were most similar due to a high consumption of fish prey, whereas pink, chum, and sockeye salmon diets were more variable with no consistently dominant prey taxa. Salmon diets varied more spatially (by oceanographic and regional factors) than temporally (by season or year) in terms of percentage weight or volume of major prey categories. We also examined regional variations in feeding intensity based on stomach fullness (expressed as percent body weight) and percent of empty or overly full stomachs. Stomach fullness tended to be greater off Alaska than off the west coast of the United States, but the data were highly variable. Results from these comparisons provide a large-scale picture of juvenile salmon feeding in coastal waters throughout much of their range, allowing for comparison with available prey resources, growth, and survival patterns associated with the different regions.


2000 ◽  
Vol 57 (6) ◽  
pp. 1252-1257 ◽  
Author(s):  
Yolanda Morbey

Protandry, the earlier arrival of males to the spawning grounds than females, has been reported in several studies of Pacific salmon (Oncorhynchus spp.). However, the reasons for protandry in salmon are poorly understood and little is known about how protandry varies among and within populations. In this study, protandry was quantified in a total of 105 years using gender-specific timing data from seven populations (one for pink salmon (O. gorbuscha), three for coho salmon (O. kisutch), two for sockeye salmon (O. nerka), and one for chinook salmon (O. tshawytscha)). Using a novel statistical procedure, protandry was found to be significant in 90% of the years and in all populations. Protandry may be part of the males' strategy to maximize mating opportunities and may facilitate mate choice by females.


1981 ◽  
Vol 38 (12) ◽  
pp. 1636-1656 ◽  
Author(s):  
W. E. Ricker

Of the five species of Pacific salmon in British Columbia, chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) are harvested during their growing seasons, while pink salmon (O. gorbuscha), chum salmon (O. keta), and sockeye salmon (O. nerka) are taken only after practically all of their growth is completed. The size of the fish caught, of all species, has decreased, but to different degrees and over different time periods, and for the most part this results from a size decrease in the population. These decreases do not exhibit significant correlations with available ocean temperature or salinity series, except that for sockeye lower temperature is associated with larger size. Chinook salmon have decreased greatly in both size and age since the 1920s, most importantly because nonmaturing individuals are taken by the troll fishery; hence individuals that mature at older ages are harvested more intensively, which decreases the percentage of older ones available both directly and cumulatively because the spawners include an excess of younger fish. Other species have decreased in size principally since 1950, when the change to payment by the pound rather than by the piece made it profitable for the gill-netters to harvest more of the larger fish. Cohos and pinks exhibit the greatest decreases, these being almost entirely a cumulative genetic effect caused by commercial trolls and gill nets removing fish of larger than average size. However, cohos reared in the Strait of Georgia have not decreased in size, possibly because sport trolling has different selection characteristics or because of the increase in the hatchery-reared component of the catch. The mean size of chum and sockeye salmon caught has changed much less than that of the other species. Chums have the additional peculiarity that gill nets tend to take smaller individuals than seines do and that their mean age has increased, at least between 1957 and 1972. That overall mean size has nevertheless decreased somewhat may be related to the fact that younger-maturing individuals grow much faster than older-maturing ones; hence excess removal of the smaller younger fish tends to depress growth rate. Among sockeye the decrease in size has apparently been retarded by an increase in growth rate related to the gradual cooling of the ocean since 1940. However, selection has had two important effects: an increase in the percentage of age-3 "jacks" in some stocks, these being little harvested, and an increase in the difference in size between sockeye having three and four ocean growing seasons, respectively.Key words: Pacific salmon, age changes, size changes, fishery, environment, selection, heritability


1988 ◽  
Vol 66 (1) ◽  
pp. 266-273 ◽  
Author(s):  
C. B. Murray ◽  
J. D. McPhail

Embryo and alevin survival, time to hatching and emergence, and alevin and fry size of five species of Pacific salmon (Oncorhynchus) were observed at five incubation temperatures (2, 5, 8, 11, and 14 °C). No pink (Oncorhynchus gorbuscha) or chum (O. keta) salmon embryos survived to hatching at 2 °C. Coho (O. kisutch) and sockeye (O. nerka) salmon had higher embryo survival at 2 °C than chinook (O. tschawytscha) salmon. At 14 °C, chum, pink, and chinook salmon had higher embryo survival than coho or sockeye salmon. In all species, peaks of embryo mortality occurred at specific developmental stages (completion of epiboly, eye pigmentation, and hatching). Alevin survival to emergence was high for all species, except for coho and pink salmon at 14 °C. Hatching and emergence time varied inversely with incubation temperature, but coho salmon hatched and emerged sooner at all temperatures than the other species. Coho and sockeye salmon alevins were larger at 2 °C, pink, chum, and chinook salmon alevins were larger at 5 and 8 °C. Coho salmon fry were larger at 2 °C, chinook and chum salmon fry were larger at 5 °C, and sockeye and pink salmon fry were larger at 8 °C. High incubation temperatures reduced fry size in all species. Each species of Pacific salmon appears to be adapted to different spawning times and temperatures, and thus indirectly to specific incubation temperatures, to ensure maximum survival and size and to maintain emergence at the most favorable time each year.


1954 ◽  
Vol 11 (1) ◽  
pp. 69-97 ◽  
Author(s):  
William S. Hoar

Behaviour patterns of juvenile sockeye salmon in fresh water are compared with those of chum and coho salmon. Both sockeye and chum fry are schooling fish, responding positively to currents and avoiding shallow waters. Of the two species, chums, however, form more active schools, travel more rapidly, have a less marked cover reaction and prefer stronger light and shallower water. Sockeye smolts, in contrast to coho smolts, are more active, show little thigmotactic and territorial behaviour and a more persistent response to current. The experimental findings are discussed in relation to the migratory behaviour of these fish. It is suggested that sockeye fry, emerging from cover as the light intensity falls are displaced downstream after dark. Moderate activity and a marked preference for deep water are mechanisms postulated for continued residence of sockeye fry in lakes. Further it is suggested that the smolt exodus is due to heightened general activity, both day and night, associated with strong response to current. This brings sockeye smolts into the outflow from the lake where they hold position during the day but are displaced down the river after dark. Coho smolts, responding less vigorously to currents and maintaining a measure of contact with specific objects in their environment, move seaward more slowly than sockeye.


1971 ◽  
Vol 28 (8) ◽  
pp. 1173-1179 ◽  
Author(s):  
M. D. Qureshi ◽  
R. V. Hledin ◽  
P. A. Anastassiadis ◽  
W. E. Vanstone

The levels of hexosamine, sialic acid, fucose, and protein in serum of sockeye salmon (Oncorhynchus nerka) and, to a limited extent, in sera of coho salmon (O. kisutch) and chinook salmon (O. tshawytscha) at two reproductive stages, were determined. Hexosamine, sialic acid, fucose, hexose, seromucoid, and protein content of sexually maturing (early) and mature (spawning) sockeye salmon were studied and a comparison was attempted with the corresponding composition of bovine serum. Content of the above serum constituents was lower in spawning than in maturing populations. Protein content was much less, hexosamine a little less, and sialic acid higher, in the sera of sockeye salmon than in bovine serum. The protein–carbohydrate complex of serum appeared to contain more hexosamine and much more sialic acid than the protein–carbohydrate complex of bovine serum. Furthermore, the sialic acid-to-hexosamine ratio was much higher in sera of salmon than in bovine serum. Some other sex and reproductive stage differences were detected and reported.


1993 ◽  
Vol 50 (3) ◽  
pp. 586-590 ◽  
Author(s):  
Dennis W. Martens ◽  
James A. Servizi

Intracellular sediment particles were observed in the gills of underyearling coho salmon (Oncorhynchus kisutch) and pink salmon (O. gorbuscha) following laboratory exposure to Fraser River sediment. Gills of underyearling sockeye salmon (O. nerka), chinook salmon (O. tshawytscha), and coho exposed to a natural suspended sediment in Cultus Lake hatchery water also contained intracellular mineral particles. Mineral particles were seen in both epithelial and underlying gill filamental cells, and it is believed that these particles were phagocytosed by the former. Intracellular sediment particles were also observed in spleens of some sediment-exposed fish. Electron microscopy was used to measure gill particle sizes and X-ray diffraction analysis to identify eight minerals and one metal in the gills of sockeye previously exposed to suspended sediment.


1973 ◽  
Vol 30 (8) ◽  
pp. 1099-1104 ◽  
Author(s):  
J. R. McBride ◽  
U. H. M. Fagerlund

The effect of 17 α-methyltestosterone feeding on the weight of juvenile coho salmon (Oncorhynchus kisutch) and on the weight, length, and condition factor of juvenile chinook salmon (O. tshawytscha) was determined. Significant increases in weight and length but not in condition factor were noted at all levels of steroid tested. Coho fed rations containing 10 mg/kg of the steroid for 42 days showed a 29% net weight gain and chinooks fed 1 mg/kg of the hormone for 84 days exhibited a 17% net weight gain over the respective control groups.A marked thickening of the skin was noted in the coho retained on diets containing 10 and 50 mg/kg of the steroid. This alteration was most evident in those fish fed the highest concentrations of hormone for the longest period.In the coho, diets containing 10 or 50 mg/kg of the hormone evoked marked degenerative changes in the testes. Less drastic alterations were noted in the testes of the chinooks retained on the 1 mg/kg test ration for 84 days. No apparent structural changes were noted in the ovary of any of the test fish.


1976 ◽  
Vol 33 (7) ◽  
pp. 1483-1524 ◽  
Author(s):  
W. E. Ricker

Mortality (other than landed catch) caused by pelagic gillnetting is estimated to be equal to the catch, for salmon in their penultimate year of life, and equal to about a quarter of the catch for salmon in their final year of life. Mortality caused by trolling for coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) averages about one fish killed (mostly below legal size) for every two that are boated. The natural mortality rate for sockeye salmon (O. nerka) in their final year of life averages about 0.015 per mo and is somewhat more in earlier years of pelagic life; the greater part of natural mortality after the smolt stage occurs during the downstream migration and early months of "coastal" life. For coho and chinook the best natural mortality estimate for the last year of life is 0.013 per mo, and that for pink (O. gorbuscha) and chum (O. keta) is of the same order. Growth rates during the final growing season vary from 0.26 per mo for pink and coho salmon to 0.06 per mo for chinook in their 5th ocean yr. Gains from ceasing to take immature salmon on the high seas range up to 300% of the catch now being taken in that category, while for fish taken in their final year they range up to about 70%, depending on the time of year at which the fishing is done. Gains from transferring existing pelagic net fisheries to the coastal region would be 76% (North American sockeye) and 86% (Asian sockeye) of the weight of fish now caught pelagically. Gains in total yield of existing salmon fisheries (pelagic and coastal) are estimated as 78% for Asian pink salmon and 72% for Asian sockeye. The increase in weight of the total catch from discontinuing ocean trolling for Columbia River chinook salmon and increasing river fishing correspondingly is estimated tentatively as between 63 and 98%.


1962 ◽  
Vol 40 (7) ◽  
pp. 919-927 ◽  
Author(s):  
H. Tsuyuki ◽  
E. Roberts ◽  
R. E. A. Gadd

The muscle myogens and other components of the spring salmon (O. tshawytscha), chum salmon (O. keta), coho salmon (O. kisutch), and sockeye salmon (O. nerka), as well as the lingcod (Ophiodon elongatus), were separated by the use of diethylaminoethyl (DEAE) cellulose columns. Significant amounts of slowly dialyzable inosine and inosinic acid which may lead to spurious peaks in moving-boundary electrophoretic separations have been shown to be present in the muscle myogen preparations. The basic differences in the muscle myogen components of the Pacific salmon and the lingcod are compared.


Sign in / Sign up

Export Citation Format

Share Document